Jennifer A. Gourlie
Oregon State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer A. Gourlie.
Plant Disease | 2005
Richard W. Smiley; Jennifer A. Gourlie; Sandra A. Easley; Lisa-Marie Patterson; Ruth G. Whittaker
Crown rot of wheat and barley in the Pacific Northwest is caused by a complex of Fusarium pseudograminearum, F. culmorum, F. avenaceum, Bipolaris sorokiniana, and Microdochium nivale. Yield-loss estimates were made by evaluating yield components on tillers collected from commercial fields and sorted by disease severity classes, and by comparing yields for field plots inoculated with F. pseudograminearum with yields in naturally infested soil. Increasing crown rot severity caused an increase in grain protein content and reduction in grain yield, kernels per head, kernel weight, test weight, tiller height, and straw weight. Crown rot reduced winter wheat yield as much as 1,550 kg/ha (35%,
Plant Disease | 2005
Richard W. Smiley; Jennifer A. Gourlie; Sandra A. Easley; Lisa-Marie Patterson
219/ha) in commercial fields, with a 13-field mean of 9.5% (
Plant Disease | 2005
Richard W. Smiley; Ruth G. Whittaker; Jennifer A. Gourlie; Sandra A. Easley
51/ha). Inoculation reduced yields as much as 2,630 kg/ha (61%,
Plant Disease | 2013
Richard W. Smiley; Stephen Machado; Jennifer A. Gourlie; Larry Pritchett; Guiping Yan; Erling E. Jacobsen
372/ha) over that caused by the native pathogen flora. Rain-induced crusting of the soil surface greatly amplified preemergence damping-off caused by F. pseudograminearum. Crown rot caused the greatest losses during seasons of lowest precipitation but also damaged crops under wet conditions. Aboveground symptoms were not always apparent under conditions of moderate infection and yield constraint. Damage from crown rot in the Pacific Northwest is more widespread and damaging than previously recognized.
Plant Disease | 2006
Richard W. Smiley; Ruth G. Whittaker; Jennifer A. Gourlie; Sandra A. Easley
Crown rot of wheat in the Pacific Northwest is caused by a complex including Bipolaris sorokiniana, Fusarium avenaceum, F. culmorum, F. pseudograminearum, and Microdochium nivale. Relative pathogenicity was examined under greenhouse conditions for 178 isolates of the five species, and under field conditions for 24 isolates of B. sorokiniana, F. culmorum, and F. pseudograminearum. In the greenhouse, all five species reduced (P < 0.05) plant height relative to noninoculated controls. Disease severity was inversely correlated with plant height for the three Fusarium spp. In one or more of four experiments with spring wheat in the field, all three species reduced stand establishment and density of mature heads and increased the incidence and severity of crown rot. F. culmorum and F. pseudograminearum caused the greatest disease severity and plant damage and were the only pathogens that reduced grain yield. Virulence ratings were variable among isolates for each species in all greenhouse and field experiments. Isolate variability was especially high for the location and year variables in field experiments. Mixtures of multiple isolates are required for future research.
Plant Disease | 2012
Richard W. Smiley; Jennifer A. Gourlie; Karl Rhinhart; Juliet M. Marshall; Monte D. Anderson; Guiping Yan
Many wheat (Triticum aestivum) fields planted annually in the Pacific Northwest are infested by high populations of the lesion nematode, Pratylenchus neglectus. Spring wheat cultivars varying in tolerance and resistance to P. neglectus were treated or not treated with aldicarb to examine relationships between the nematode and growth and yield of annual direct-seeded (no-till) wheat. Increasing initial density of P. neglectus in soil was more strongly associated with declining growth and yield of intolerant (Machete and Spear) than moderately tolerant (Frame and Krichauff) cultivars. Yield suppression by P. neglectus was generally 8 to 36% for intolerant cultivars, but reached 71% in soil also harboring Heterodera avenae, Rhizoctonia solani AG-8, and Gaeumannomyces graminis var. tritici. Intolerant cultivars had lower yields than Krichauff in rainfed but not in irrigated experiments. Density of P. neglectus in mature roots was generally lower for moderately resistant Krichauff than for susceptible Machete and Spear. Aldicarb improved yields in irrigated but not in rainfed experiments, and increased plant height and reduced variability in tiller height, canopy temperature, and density of P. neglectus in roots. This is the first report of damage to wheat by P. neglectus in the Pacific Northwest. Breeding wheat for tolerance and resistance to P. neglectus is suggested.
Plant Disease | 2013
Richard W. Smiley; Stephen Machado; Jennifer A. Gourlie; Larry Pritchett; Guiping Yan; Erling E. Jacobsen
There is interest in converting rainfed cropping systems in the Pacific Northwest from a 2-year rotation of winter wheat and cultivated fallow to direct-seed (no-till) systems that include chemical fallow, spring cereals, and food legume and brassica crops. Little information is available regarding effects of these changes on plant-parasitic nematodes. Eight cropping systems in a low-precipitation region (<330 mm) were compared over 9 years. Each phase of each rotation occurred each year. The density of Pratylenchus spp. was greater in cultivated than chemical fallow, became greater with increasing frequency of host crops, and was inversely associated with precipitation (R2 = 0.92, α < 0.01). Densities after harvesting mustard, spring wheat, winter wheat, and winter pea were greater (α < 0.01) than after harvesting spring barley or spring pea. Camelina also produced low densities. Winter wheat led to a greater density of Pratylenchus neglectus and spring wheat led to a greater density of P. thornei. Density of Pratylenchus spp. was correlated (R2 = 0.88, α < 0.01) but generally higher when detected by real-time polymerase chain reaction on DNA extracts from soil than when detected by a traditional method. Selection of different Pratylenchus spp. by different wheat cultivars or growth habit must be addressed to minimize the level of nematode risk to future plantings of intolerant crops.
Pest Management Science | 2018
Judit Barroso; Jennifer A. Gourlie; Larry K. Lutcher; Mingyang Liu; Carol A. Mallory-Smith
Associations between stunt nematodes and yield of no-till annual spring wheat (Triticum aestivum) were examined at two eastern Oregon locations. Geocenamus brevidens was the only species detected at one location and was mixed with Tylenchorhynchus clarus at another location. Six cultivars were planted with or without application of aldicarb during 2001. Inverse correlations between yield and stunt nematode density were significant at the G. brevidens-only site (P = 0.04) but not the G. brevidens + T. clarus site (P = 0.44). Yields were inversely correlated (P < 0.01) with stunt nematode populations at both sites during 2002. Aldicarb improved grain yields at both locations during 2001 (17 and 24%, P < 0.01) but not at the single location treated with aldicarb during 2002 (10%, P = 0.06). A lack of association between yield and T. clarus in 19 previously unreported experiments is discussed. Reduced wheat yield in response to stunt nematodes in Oregon is likely due to parasitism by G. brevidens and not T. clarus. This is the first report associating G. brevidens with suppression of wheat yield in the Pacific Northwest. Further studies are needed to define cropping systems and locations where G. brevidens may cause economic damage.
Pest Management Science | 2017
Judit Barroso; Jennifer A. Gourlie; Larry K. Lutcher; Mingyang Liu; Carol A. Mallory-Smith
A complex of fungal soilborne pathogens and plant-parasitic nematodes reduces wheat yields in the Pacific Northwest. On several other crops in nematode-infested soils, seed treatment with abamectin (Avicta) or Bacillus firmus (Votivo) or foliar application of spirotetramat (Movento) reduced root injury and improved yield. These products, along with fungicide seed treatments and aldicarb (Temik), were evaluated in 13 spring wheat trials over 3 years. During 2011, the mean wheat yield at four locations was 419 kg/ha greater (valued at
PLOS ONE | 2018
Carolina San Martín; Dan S. Long; Jennifer A. Gourlie; Judit Barroso
122/ha) from seed treated with fungicides and insecticide than from untreated seed, due to protection against soilborne fungal pathogens. Aldicarb increased the mean grain yield over the fungicide-plus-insecticide treatment by another 798 kg/ha (valued at