Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer A. Leonard is active.

Publication


Featured researches published by Jennifer A. Leonard.


Nature | 2011

Species-specific responses of Late Quaternary megafauna to climate and humans

Eline D. Lorenzen; David Nogués-Bravo; Ludovic Orlando; Jaco Weinstock; Jonas Binladen; Katharine A. Marske; Andrew Ugan; Michael K. Borregaard; M. Thomas P. Gilbert; Rasmus Nielsen; Simon Y. W. Ho; Ted Goebel; Kelly E. Graf; David A. Byers; Jesper Stenderup; Morten Rasmussen; Paula F. Campos; Jennifer A. Leonard; Klaus-Peter Koepfli; Duane G. Froese; Grant D. Zazula; Thomas W. Stafford; Kim Aaris-Sørensen; Persaram Batra; Alan M. Haywood; Joy S. Singarayer; Paul J. Valdes; G. G. Boeskorov; James A. Burns; Sergey P. Davydov

Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.


Molecular Ecology | 1999

Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus

Carles Vilà; Isabel R. Amorim; Jennifer A. Leonard; David Posada; Javier Castroviejo; Francisco Petrucci-Fonseca; Keith A. Crandall; Hans Ellegren; Robert K. Wayne

The grey wolf (Canis lupus) and coyote (C. latrans) are highly mobile carnivores that disperse over great distances in search of territories and mates. Previous genetic studies have shown little geographical structure in either species. However, population genetic structure is also influenced by past isolation events and population fluctuations during glacial periods. In this study, control region sequence data from a worldwide sample of grey wolves and a more limited sample of coyotes were analysed. The results suggest that fluctuating population sizes during the late Pleistocene have left a genetic signature on levels of variation in both species. Genealogical measures of nucleotide diversity suggest that historical population sizes were much larger in both species and grey wolves were more numerous than coyotes. Currently, about 300 000 wolves and 7 million coyotes exist. In grey wolves, genetic diversity is greater than that predicted from census population size, reflecting recent historical population declines. By contrast, nucleotide diversity in coyotes is smaller than that predicted by census population size, reflecting a recent population expansion following the extirpation of wolves from much of North America. Both species show little partitioning of haplotypes on continental or regional scales. However, a statistical parsimony analysis indicates local genetic structure that suggests recent restricted gene flow.


Science | 2009

Molecular and Evolutionary History of Melanism in North American Gray Wolves

Tovi M. Anderson; Bridgett M. vonHoldt; Sophie I. Candille; Marco Musiani; Claudia Greco; Daniel R. Stahler; Douglas W. Smith; Badri Padhukasahasram; Ettore Randi; Jennifer A. Leonard; Carlos Bustamante; Elaine A. Ostrander; Hua Tang; Robert K. Wayne; Gregory S. Barsh

Morphological diversity within closely related species is an essential aspect of evolution and adaptation. Mutations in the Melanocortin 1 receptor (Mc1r) gene contribute to pigmentary diversity in natural populations of fish, birds, and many mammals. However, melanism in the gray wolf, Canis lupus, is caused by a different melanocortin pathway component, the K locus, that encodes a beta-defensin protein that acts as an alternative ligand for Mc1r. We show that the melanistic K locus mutation in North American wolves derives from past hybridization with domestic dogs, has risen to high frequency in forested habitats, and exhibits a molecular signature of positive selection. The same mutation also causes melanism in the coyote, Canis latrans, and in Italian gray wolves, and hence our results demonstrate how traits selected in domesticated species can influence the morphological diversity of their wild relatives.


Science | 2013

Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs

Olaf Thalmann; Beth Shapiro; Pin Cui; Verena J. Schuenemann; Susanna Sawyer; D. L. Greenfield; Mietje Germonpré; Mikhail V. Sablin; F. López-Giráldez; X. Domingo-Roura; Hannes Napierala; H-P. Uerpmann; D. M. Loponte; A. A. Acosta; Liane Giemsch; Ralf Schmitz; B. Worthington; Jane E. Buikstra; Anna S. Druzhkova; Alexander S. Graphodatsky; Nikolai D. Ovodov; Niklas Wahlberg; Adam H. Freedman; Rena M. Schweizer; Klaus-Peter Koepfli; Jennifer A. Leonard; Matthias Meyer; Johannes Krause; Svante Pääbo; Richard E. Green

Dog Domestication The precise details of the domestication and origins of domestic dogs are unclear. Thalmann et al. (p. 871; see the cover) analyzed complete mitochondrial genomes from present-day dogs and wolves, as well as 18 fossil canids dating from 1000 to 36,000 years ago from the Old and New Worlds. The data suggest that an ancient, now extinct, central European population of wolves was directly ancestral to domestic dogs. Furthermore, several ancient dogs may represent failed domestication events. Ancient DNA suggests that dog domestication was complex and likely originated in Europe. The geographic and temporal origins of the domestic dog remain controversial, as genetic data suggest a domestication process in East Asia beginning 15,000 years ago, whereas the oldest doglike fossils are found in Europe and Siberia and date to >30,000 years ago. We analyzed the mitochondrial genomes of 18 prehistoric canids from Eurasia and the New World, along with a comprehensive panel of modern dogs and wolves. The mitochondrial genomes of all modern dogs are phylogenetically most closely related to either ancient or modern canids of Europe. Molecular dating suggests an onset of domestication there 18,800 to 32,100 years ago. These findings imply that domestic dogs are the culmination of a process that initiated with European hunter-gatherers and the canids with whom they interacted.


Science | 2012

Nuclear Genomic Sequences Reveal that Polar Bears Are an Old and Distinct Bear Lineage

Frank Hailer; Verena E. Kutschera; Bjoern M. Hallstroem; Denise Klassert; Steven R. Fain; Jennifer A. Leonard; Ulfur Arnason; Axel Janke

Ancient Bears Polar bears are well known for adapting to their cold Arctic climate. Some recent studies, based on mitochondrial DNA, concluded that they are a relatively young species and that these adaptations occurred quite quickly. Although mitochondrial DNA is regularly used to estimate evolutionary history, it has some well-known drawbacks, including sex-biased dispersal and hybridization. Thus, Hailer et al. (p. 344) looked at neutral genetic data that are distributed more widely across the genome of a relatively large sample of polar, brown, and black bears. Consistent with fossil-based studies, the analysis reveals polar bears as a sister lineage to all brown bears, with an estimated divergence time of 300,000 to 900,000 years ago. Thus, polar bears are indeed of a more ancient lineage, and more recent estimates based on mitochondrial DNA are likely to have been affected by past hybridization with brown bear. Genomic analyses show that polar bears as a species are older and genetically more distinct than previously estimated. Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.


Molecular Ecology | 2007

Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou

Marco Musiani; Jennifer A. Leonard; H. Dean Cluff; C. Cormack Gates; Stefano Mariani; Paul C. Paquet; Carles Vilà; Robert K. Wayne

The grey wolf has one of the largest historic distributions of any terrestrial mammal and can disperse over great distances across imposing topographic barriers. As a result, geographical distance and physical obstacles to dispersal may not be consequential factors in the evolutionary divergence of wolf populations. However, recent studies suggest ecological features can constrain gene flow. We tested whether wolf–prey associations in uninterrupted tundra and forested regions of Canada explained differences in migratory behaviour, genetics, and coat colour of wolves. Satellite‐telemetry data demonstrated that tundra wolves (n = 19) migrate annually with caribou (n = 19) from denning areas in the tundra to wintering areas south of the treeline. In contrast, nearby boreal coniferous forest wolves are territorial and associated year round with resident prey. Spatially explicit analysis of 14 autosomal microsatellite loci (n = 404 individuals) found two genetic clusters corresponding to tundra vs. boreal coniferous forest wolves. A sex bias in gene flow was inferred based on higher levels of mtDNA divergence (FST = 0.282, 0.028 and 0.033; P < 0.0001 for mitochondrial, nuclear autosomal and Y‐chromosome markers, respectively). Phenotypic differentiation was substantial as 93% of wolves from tundra populations exhibited light colouration whereas only 38% of boreal coniferous forest wolves did (χ2 = 64.52, P < 0.0001). The sharp boundary representing this discontinuity was the southern limit of the caribou migration. These findings show that substantial genetic and phenotypic differentiation in highly mobile mammals can be caused by prey–habitat specialization rather than distance or topographic barriers. The presence of a distinct wolf ecotype in the tundra of North America highlights the need to preserve migratory populations.


Current Biology | 2007

Megafaunal Extinctions and the Disappearance of a Specialized Wolf Ecomorph

Jennifer A. Leonard; Carles Vilà; Kena Fox-Dobbs; Paul L. Koch; Robert K. Wayne; Blaire Van Valkenburgh

The gray wolf (Canis lupus) is one of the few large predators to survive the Late Pleistocene megafaunal extinctions [1]. Nevertheless, wolves disappeared from northern North America in the Late Pleistocene, suggesting they were affected by factors that eliminated other species. Using skeletal material collected from Pleistocene permafrost deposits of eastern Beringia, we present a comprehensive analysis of an extinct vertebrate by exploring genetic (mtDNA), morphologic, and isotopic (delta(13)C, delta(15)N) data to reveal the evolutionary relationships, as well as diet and feeding behavior, of ancient wolves. Remarkably, the Late Pleistocene wolves are genetically unique and morphologically distinct. None of the 16 mtDNA haplotypes recovered from a sample of 20 Pleistocene eastern-Beringian wolves was shared with any modern wolf, and instead they appear most closely related to Late Pleistocene wolves of Eurasia. Moreover, skull shape, tooth wear, and isotopic data suggest that eastern-Beringian wolves were specialized hunters and scavengers of extinct megafauna. Thus, a previously unrecognized, uniquely adapted, and genetically distinct wolf ecomorph suffered extinction in the Late Pleistocene, along with other megafauna. Consequently, the survival of the species in North America depended on the presence of more generalized forms elsewhere.


Molecular Ecology | 2005

FAST TRACK: Legacy lost: genetic variability and population size of extirpated US grey wolves (Canis lupus)

Jennifer A. Leonard; Carles Vilà; Robert K. Wayne

By the mid 20th century, the grey wolf (Canis lupus) was exterminated from most of the conterminous United States (cUS) and Mexico. However, because wolves disperse over long distances, extant populations in Canada and Alaska might have retained a substantial proportion of the genetic diversity once found in the cUS. We analysed mitochondrial DNA sequences of 34 pre‐extermination wolves and found that they had more than twice the diversity of their modern conspecifics, implying a historic population size of several hundred thousand wolves in the western cUS and Mexico. Further, two‐thirds of the haplotypes found in the historic sample are unique. Sequences from Mexican grey wolves (C. l. baileyi) and some historic grey wolves defined a unique southern clade supporting a much wider geographical mandate for the reintroduction of Mexican wolves than currently planned. Our results highlight the genetic consequences of population extinction within Ice Age refugia and imply that restoration goals for grey wolves in the western cUS include far less area and target vastly lower population sizes than existed historically.


Molecular Ecology | 2008

Ancient DNA applications for wildlife conservation

Jennifer A. Leonard

Ancient DNA analyses of historical, archaeological and paleontological remains can contribute important information for the conservation of populations and species that cannot be obtained any other way. In addition to ancient DNA analyses involving a single or few individuals, population level studies are now possible. Biases inherent in estimating population parameters and history from modern genetic diversity are exaggerated when populations are small or have been heavily impacted by recent events, as is common for many endangered species. Going directly back in time to study past populations removes many of the assumptions that undermine conclusions based only on recent populations. Accurate characterization of historic population size, levels of gene flow and relationships with other populations are fundamental to developing appropriate conservation and management plans. The incorporation of ancient DNA into conservation genetics holds a lot of potential, if it is employed responsibly.


Molecular Ecology | 2009

Origin and status of the Great Lakes wolf.

Stephan Koblmüller; Maria Nord; Robert K. Wayne; Jennifer A. Leonard

An extensive debate concerning the origin and taxonomic status of wolf‐like canids in the North American Great Lakes region and the consequences for conservation politics regarding these enigmatic predators is ongoing. Using maternally, paternally and biparentally inherited molecular markers, we demonstrate that the Great Lakes wolves are a unique population or ecotype of gray wolves. Furthermore, we show that the Great Lakes wolves experienced high degrees of ancient and recent introgression of coyote and western gray wolf mtDNA and Y‐chromosome haplotypes, and that the recent demographic bottleneck caused by persecution and habitat depletion in the early 1900s is not reflected in the genetic data.

Collaboration


Dive into the Jennifer A. Leonard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carles Vilà

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jesús E. Maldonado

Smithsonian Conservation Biology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Cooper

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa T. R. Hawkins

Smithsonian Conservation Biology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Camacho-Sanchez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Richard W. Thorington

National Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge