Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer A. Philips is active.

Publication


Featured researches published by Jennifer A. Philips.


Annual Review of Pathology-mechanisms of Disease | 2012

Tuberculosis Pathogenesis and Immunity

Jennifer A. Philips; Joel D. Ernst

Despite the development of potentially curative chemotherapy, tuberculosis (TB) continues to cause increasing worldwide morbidity and is a leading cause of human mortality in the developing world. Recent advances in bacterial molecular genetics, immunology, and human genetics have yielded insight into the molecular determinants of virulence, the immune responses that are essential for restricting progressive disease, and the determinants of immunopathology in TB. Despite these advances, a large knowledge gap still exists that limits the development and testing of new interventions, including novel drugs and efficacious vaccines. This review focuses on our current knowledge of TB pathogenesis and immunity that has been derived from in vitro and in vivo studies. In addition, it highlights topics that need to be better understood to provide improved means of controlling TB worldwide.


Nature Immunology | 2016

Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism

Mireille Ouimet; Stefan Köster; Erik T. Sakowski; Bhama Ramkhelawon; Coen van Solingen; Scott Oldebeken; Denuja Karunakaran; Cynthia Portal-Celhay; Frederick J. Sheedy; Tathagat Dutta Ray; Katharine Cecchini; Philip D Zamore; Katey J. Rayner; Yves L. Marcel; Jennifer A. Philips; Kathryn J. Moore

Mycobacterium tuberculosis (Mtb) survives in macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. We found that by inducing the microRNA (miRNA) miR-33 and its passenger strand miR-33*, Mtb inhibited integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promoted autophagy flux through derepression of key autophagy effectors (such as ATG5, ATG12, LC3B and LAMP1) and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, which enhanced lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit used by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host.


Proceedings of the National Academy of Sciences of the United States of America | 2008

ESCRT factors restrict mycobacterial growth

Jennifer A. Philips; Maura Porto; Hui Wang; Eric J. Rubin; Norbert Perrimon

Nearly 1.7 billion people are infected with Mycobacterium tuberculosis. Its ability to survive intracellularly is thought to be central to its success as a pathogen, but how it does this is poorly understood. Using a Drosophila model of infection, we identify three host cell activities, Rab7, CG8743, and the ESCRT machinery, that modulate the mycobacterial phagosome. In the absence of these factors the cell no longer restricts growth of the non-pathogen Mycobacterium smegmatis. Hence, we identify factors that represent unique vulnerabilities of the host cell, because manipulation of any one of them alone is sufficient to allow a nonpathogenic mycobacterial species to proliferate. Furthermore, we demonstrate that, in mammalian cells, the ESCRT machinery plays a conserved role in restricting bacterial growth.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence

JoAnn M. Tufariello; Jessica R. Chapman; Christopher A. Kerantzas; Ka Wing Wong; Catherine Vilchèze; Christopher M. Jones; Laura E. Cole; Emir Tinaztepe; Victor Thompson; David Fenyö; Michael Niederweis; Beatrix Ueberheide; Jennifer A. Philips; William R. Jacobs

Significance Mycobacterium tuberculosis (Mtb) uses type VII secretion systems to secrete cognate protein pairs that alter host interactions. Here, we address the contributions of the ESX-3 secretion system to Mtb growth and pathogenesis through a combination of genetics, proteomics, and growth studies both in vitro and in vivo. ESX-3 is demonstrated to play a critical role in iron acquisition through secretion of a pair pf proteins belonging to the PE–PPE family (PE5–PPE4). In vivo, the importance of PE5–PPE4 secretion was found to depend upon host genotype, likely reflecting a host capacity to restrict iron availability. However, secreted effectors EsxG–EsxH play an iron-independent role in Mtb virulence. Therefore, ESX-3 secretes multiple effectors that target distinct host pathways to influence pathogenesis. Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems (T7SS), designated ESX-1–ESX-5, that are critical for growth and pathogenesis. The best characterized is ESX-1, which profoundly impacts host cell interactions. In contrast, the ESX-3 T7SS is implicated in metal homeostasis, but efforts to define its function have been limited by an inability to recover deletion mutants. We overcame this impediment using medium supplemented with various iron complexes to recover mutants with deletions encompassing select genes within esx-3 or the entire operon. The esx-3 mutants were defective in uptake of siderophore-bound iron and dramatically accumulated cell-associated mycobactin siderophores. Proteomic analyses of culture filtrate revealed that secretion of EsxG and EsxH was codependent and that EsxG–EsxH also facilitated secretion of several members of the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) protein families (named for conserved PE and PPE N-terminal motifs). Substrates that depended on EsxG–EsxH for secretion included PE5, encoded within the esx-3 locus, and the evolutionarily related PE15–PPE20 encoded outside the esx-3 locus. In vivo characterization of the mutants unexpectedly showed that the ESX-3 secretion system plays both iron-dependent and -independent roles in Mtb pathogenesis. PE5–PPE4 was found to be critical for the siderophore-mediated iron-acquisition functions of ESX-3. The importance of this iron-acquisition function was dependent upon host genotype, suggesting a role for ESX-3 secretion in counteracting host defense mechanisms that restrict iron availability. Further, we demonstrate that the ESX-3 T7SS secretes certain effectors that are important for iron uptake while additional secreted effectors modulate virulence in an iron-independent fashion.


Mbio | 2014

Mycobacterial Esx-3 Requires Multiple Components for Iron Acquisition

M. Sloan Siegrist; Magnus Steigedal; Rushdy Ahmad; Alka Mehra; Marte Singsås Dragset; Brian M. Schuster; Jennifer A. Philips; Steven A. Carr; Eric J. Rubin

ABSTRACT The type VII secretion systems are conserved across mycobacterial species and in many Gram-positive bacteria. While the well-characterized Esx-1 pathway is required for the virulence of pathogenic mycobacteria and conjugation in the model organism Mycobacterium smegmatis, Esx-3 contributes to mycobactin-mediated iron acquisition in these bacteria. Here we show that several Esx-3 components are individually required for function under low-iron conditions but that at least one, the membrane-bound protease MycP3 of M. smegmatis, is partially expendable. All of the esx-3 mutants tested, including the ΔmycP3ms mutant, failed to export the native Esx-3 substrates EsxHms and EsxGms to quantifiable levels, as determined by targeted mass spectrometry. Although we were able to restore low-iron growth to the esx-3 mutants by genetic complementation, we found a wide range of complementation levels for protein export. Indeed, minute quantities of extracellular EsxHms and EsxGms were sufficient for iron acquisition under our experimental conditions. The apparent separation of Esx-3 function in iron acquisition from robust EsxGms and EsxHms secretion in the ΔmycP3ms mutant and in some of the complemented esx-3 mutants compels reexamination of the structure-function relationships for type VII secretion systems. IMPORTANCE Mycobacteria have several paralogous type VII secretion systems, Esx-1 through Esx-5. Whereas Esx-1 is required for pathogenic mycobacteria to grow within an infected host, Esx-3 is essential for growth in vitro. We and others have shown that Esx-3 is required for siderophore-mediated iron acquisition. In this work, we identify individual Esx-3 components that contribute to this process. As in the Esx-1 system, most mutations that abolish Esx-3 protein export also disrupt its function. Unexpectedly, however, ultrasensitive quantitation of Esx-3 secretion by multiple-reaction-monitoring mass spectrometry (MRM-MS) revealed that very low levels of export were sufficient for iron acquisition under similar conditions. Although protein export clearly contributes to type VII function, the relationship is not absolute. Mycobacteria have several paralogous type VII secretion systems, Esx-1 through Esx-5. Whereas Esx-1 is required for pathogenic mycobacteria to grow within an infected host, Esx-3 is essential for growth in vitro. We and others have shown that Esx-3 is required for siderophore-mediated iron acquisition. In this work, we identify individual Esx-3 components that contribute to this process. As in the Esx-1 system, most mutations that abolish Esx-3 protein export also disrupt its function. Unexpectedly, however, ultrasensitive quantitation of Esx-3 secretion by multiple-reaction-monitoring mass spectrometry (MRM-MS) revealed that very low levels of export were sufficient for iron acquisition under similar conditions. Although protein export clearly contributes to type VII function, the relationship is not absolute.


Journal of Immunology | 2015

Ca2+ Signaling but Not Store-Operated Ca2+ Entry Is Required for the Function of Macrophages and Dendritic Cells

Martin Vaeth; Isabelle Zee; Axel R. Concepcion; Mate Maus; Patrick J. Shaw; Cynthia Portal-Celhay; Aleena Zahra; Lina Kozhaya; Carl Weidinger; Jennifer A. Philips; Derya Unutmaz; Stefan Feske

Store-operated Ca2+ entry (SOCE) through Ca2+ release–activated Ca2+ (CRAC) channels is essential for immunity to infection. CRAC channels are formed by ORAI1 proteins in the plasma membrane and activated by stromal interaction molecule (STIM)1 and STIM2 in the endoplasmic reticulum. Mutations in ORAI1 and STIM1 genes that abolish SOCE cause severe immunodeficiency with recurrent infections due to impaired T cell function. SOCE has also been observed in cells of the innate immune system such as macrophages and dendritic cells (DCs) and may provide Ca2+ signals required for their function. The specific role of SOCE in macrophage and DC function, as well as its contribution to innate immunity, however, is not well defined. We found that nonselective inhibition of Ca2+ signaling strongly impairs many effector functions of bone marrow–derived macrophages and bone marrow–derived DCs, including phagocytosis, inflammasome activation, and priming of T cells. Surprisingly, however, macrophages and DCs from mice with conditional deletion of Stim1 and Stim2 genes, and therefore complete inhibition of SOCE, showed no major functional defects. Their differentiation, FcR-dependent and -independent phagocytosis, phagolysosome fusion, cytokine production, NLRP3 inflammasome activation, and their ability to present Ags to activate T cells were preserved. Our findings demonstrate that STIM1, STIM2, and SOCE are dispensable for many critical effector functions of macrophages and DCs, which has important implications for CRAC channel inhibition as a therapeutic strategy to suppress pathogenic T cells while not interfering with myeloid cell functions required for innate immunity.


PLOS Pathogens | 2015

Ubiquilin 1 Promotes IFN-γ-Induced Xenophagy of Mycobacterium tuberculosis.

Erik T. Sakowski; Stefan Köster; Cynthia Portal Celhay; Heidi S. Park; Elina Shrestha; Stefanie E. Hetzenecker; Katie Maurer; Ken Cadwell; Jennifer A. Philips

The success of Mycobacterium tuberculosis (Mtb) as a pathogen rests upon its ability to grow intracellularly in macrophages. Interferon-gamma (IFN-γ) is critical in host defense against Mtb and stimulates macrophage clearance of Mtb through an autophagy pathway. Here we show that the host protein ubiquilin 1 (UBQLN1) promotes IFN-γ-mediated autophagic clearance of Mtb. Ubiquilin family members have previously been shown to recognize proteins that aggregate in neurodegenerative disorders. We find that UBQLN1 can interact with Mtb surface proteins and associates with the bacilli in vitro. In IFN-γ activated macrophages, UBQLN1 co-localizes with Mtb and promotes the anti-mycobacterial activity of IFN-γ. The association of UBQLN1 with Mtb depends upon the secreted bacterial protein, EsxA, which is involved in permeabilizing host phagosomes. In autophagy-deficient macrophages, UBQLN1 accumulates around Mtb, consistent with the idea that it marks bacilli that traffic through the autophagy pathway. Moreover, UBQLN1 promotes ubiquitin, p62, and LC3 accumulation around Mtb, acting independently of the E3 ligase parkin. In summary, we propose a model in which UBQLN1 recognizes Mtb and in turn recruits the autophagy machinery thereby promoting intracellular control of Mtb. Thus, polymorphisms in ubiquilins, which are known to influence susceptibility to neurodegenerative illnesses, might also play a role in host defense against Mtb.


Nature microbiology | 2017

Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4(+) T-cell activation.

Cynthia Portal-Celhay; JoAnn M. Tufariello; Smita Srivastava; Aleena Zahra; Thais Klevorn; Patricia S. Grace; Alka Mehra; Heidi S. Park; Joel D. Ernst; William R. Jacobs; Jennifer A. Philips

Mycobacterium tuberculosis (Mtb) establishes a persistent infection, despite inducing antigen-specific T-cell responses. Although T cells arrive at the site of infection, they do not provide sterilizing immunity. The molecular basis of how Mtb impairs T-cell function is not clear. Mtb has been reported to block major histocompatibility complex class II (MHC-II) antigen presentation; however, no bacterial effector or host-cell target mediating this effect has been identified. We recently found that Mtb EsxH, which is secreted by the Esx-3 type VII secretion system, directly inhibits the endosomal sorting complex required for transport (ESCRT) machinery. Here, we showed that ESCRT is required for optimal antigen processing; correspondingly, overexpression and loss-of-function studies demonstrated that EsxH inhibited the ability of macrophages and dendritic cells to activate Mtb antigen-specific CD4+ T cells. Compared with the wild-type strain, the esxH-deficient strain induced fivefold more antigen-specific CD4+ T-cell proliferation in the mediastinal lymph nodes of mice. We also found that EsxH undermined the ability of effector CD4+ T cells to recognize infected macrophages and clear Mtb. These results provide a molecular explanation for how Mtb impairs the adaptive immune response.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA

Stefan Köster; Sandeep Upadhyay; Pallavi Chandra; K. G. Papavinasasundaram; Guozhe Yang; Amir Hassan; Steven Grigsby; Ekansh Mittal; Heidi S. Park; Victoria Jones; Fong-Fu Hsu; Mary Jackson; Christopher M. Sassetti; Jennifer A. Philips

Significance Mycobacterium tuberculosis (Mtb), the causative agent of the disease tuberculosis, grows in macrophages, cells that normally kill bacteria. Recent work has defined a macrophage pathway called “LC3-associated phagocytosis” (LAP) that can eliminate other microbes. LAP is characterized by the recruitment of NADPH oxidase to phagosomes, followed by phagosomal association with LC3 and delivery of the bacteria to a degradative lysosome. Here, we show that LAP does not effectively clear Mtb. The ability of Mtb to inhibit LAP and therefore cause disease depends upon CpsA, a member of the LytR-CpsA-Psr (LCP) protein family, which has previously been implicated in cell-wall metabolism. We demonstrate that Mtb CpsA plays an unexpected role in antagonizing host innate immunity by inhibiting NADPH oxidase and LAP. Mycobacterium tuberculosis’ success as a pathogen comes from its ability to evade degradation by macrophages. Normally macrophages clear microorganisms that activate pathogen-recognition receptors (PRRs) through a lysosomal-trafficking pathway called “LC3-associated phagocytosis” (LAP). Although M. tuberculosis activates numerous PRRs, for reasons that are poorly understood LAP does not substantially contribute to M. tuberculosis control. LAP depends upon reactive oxygen species (ROS) generated by NADPH oxidase, but M. tuberculosis fails to generate a robust oxidative response. Here, we show that CpsA, a LytR-CpsA-Psr (LCP) domain-containing protein, is required for M. tuberculosis to evade killing by NADPH oxidase and LAP. Unlike phagosomes containing wild-type bacilli, phagosomes containing the ΔcpsA mutant recruited NADPH oxidase, produced ROS, associated with LC3, and matured into antibacterial lysosomes. Moreover, CpsA was sufficient to impair NADPH oxidase recruitment to fungal particles that are normally cleared by LAP. Intracellular survival of the ΔcpsA mutant was largely restored in macrophages missing LAP components (Nox2, Rubicon, Beclin, Atg5, Atg7, or Atg16L1) but not in macrophages defective in a related, canonical autophagy pathway (Atg14, Ulk1, or cGAS). The ΔcpsA mutant was highly impaired in vivo, and its growth was partially restored in mice deficient in NADPH oxidase, Atg5, or Atg7, demonstrating that CpsA makes a significant contribution to the resistance of M. tuberculosis to NADPH oxidase and LC3 trafficking in vivo. Overall, our findings reveal an essential role of CpsA in innate immune evasion and suggest that LCP proteins have functions beyond their previously known role in cell-wall metabolism.


Infection and Immunity | 2016

Role of Metal-Dependent Regulation of ESX-3 Secretion in Intracellular Survival of Mycobacterium tuberculosis

Emir Tinaztepe; Jun-Rong Wei; Jenelle Raynowska; Cynthia Portal-Celhay; Victor Thompson; Jennifer A. Philips

ABSTRACT More people die every year from Mycobacterium tuberculosis infection than from infection by any other bacterial pathogen. Type VII secretion systems (T7SS) are used by both environmental and pathogenic mycobacteria to secrete proteins across their complex cell envelope. In the nonpathogen Mycobacterium smegmatis, the ESX-1 T7SS plays a role in conjugation, and the ESX-3 T7SS is involved in metal homeostasis. In M. tuberculosis, these secretion systems have taken on roles in virulence, and they also are targets of the host immune response. ESX-3 secretes a heterodimer composed of EsxG (TB9.8) and EsxH (TB10.4), which impairs phagosome maturation in macrophages and is essential for virulence in mice. Given the importance of EsxG and EsxH during infection, we examined their regulation. With M. tuberculosis, the secretion of EsxG and EsxH was regulated in response to iron and zinc, in accordance with the previously described transcriptional response of the esx-3 locus to these metals. While iron regulated the esx-3 expression in both M. tuberculosis and M. smegmatis, there is a significant difference in the dynamics of this regulation. In M. smegmatis, the esx-3 locus behaved like other iron-regulated genes such as mbtB. In M. tuberculosis, both iron and zinc modestly repressed esx-3 expression. Diminished secretion of EsxG and EsxH in response to these metals altered the interaction of M. tuberculosis with macrophages, leading to impaired intracellular M. tuberculosis survival. Our findings detail the regulatory differences of esx-3 in M. tuberculosis and M. smegmatis and demonstrate the importance of metal-dependent regulation of ESX-3 for virulence in M. tuberculosis.

Collaboration


Dive into the Jennifer A. Philips's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandeep Upadhyay

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge