Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer A. Surtees is active.

Publication


Featured researches published by Jennifer A. Surtees.


Cytogenetic and Genome Research | 2004

Mismatch repair proteins: key regulators of genetic recombination

Jennifer A. Surtees; Juan Lucas Argueso; Eric Alani

Mismatch repair (MMR) systems are central to maintaining genome stability in prokaryotes and eukaryotes. MMR proteins play a fundamental role in avoiding mutations, primarily by removing misincorporation errors that occur during DNA replication. MMR proteins also act during genetic recombination in steps that include repairing mismatches in heteroduplex DNA, modulating meiotic crossover control, removing 3′ non-homologous tails during double-strand break repair, and preventing recombination between divergent sequences. In this review we will, first, discuss roles for MMR proteins in repairing mismatches that occur during recombination, particularly during meiosis. We will also explore how studying this process has helped to refine models of double-strand break repair, and particularly to our understanding of gene conversion gradients. Second, we will examine the role of MMR proteins in repressing homeologous recombination, i.e. recombination between divergent sequences. We will also compare the requirements for MMR proteins in preventing homeologous recombination to the requirements for these proteins in mismatch repair.


Cancer Research | 2008

Broad overexpression of ribonucleotide reductase genes in mice specifically induces lung neoplasms

Xia Xu; Jennifer L. Page; Jennifer A. Surtees; Houchun Liu; Sarah J. Lagedrost; Young Lu; Roderick T. Bronson; Eric Alani; Alexander Yu. Nikitin; Robert S. Weiss

Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in nucleotide biosynthesis and plays a central role in genome maintenance. Although a number of regulatory mechanisms govern RNR activity, the physiologic effect of RNR deregulation had not previously been examined in an animal model. We show here that overexpression of the small RNR subunit potently and selectively induces lung neoplasms in transgenic mice and is mutagenic in cultured cells. Combining RNR deregulation with defects in DNA mismatch repair, the cellular mutation correction system, synergistically increased RNR-induced mutagenesis and carcinogenesis. Moreover, the proto-oncogene K-ras was identified as a frequent mutational target in RNR-induced lung neoplasms. Together, these results show that RNR deregulation promotes lung carcinogenesis through a mutagenic mechanism and establish a new oncogenic activity for a key regulator of nucleotide metabolism. Importantly, RNR-induced lung neoplasms histopathologically resemble human papillary adenocarcinomas and arise stochastically via a mutagenic mechanism, making RNR transgenic mice a valuable model for lung cancer.


Journal of Biological Chemistry | 2001

The DNA Binding Domains of P1 ParB and the Architecture of the P1 Plasmid Partition Complex

Jennifer A. Surtees; Barbara E. Funnell

Stable maintenance of P1 plasmids inEscherichia coli is mediated by a high affinity nucleoprotein complex called the partition complex, which consists of ParB and the E. coli integration host factor (IHF) bound specifically to the P1 parS site. IHF strongly stimulates ParB binding to parS, and the minimal partition complex contains a single dimer of ParB. To examine the architecture of the partition complex, we have investigated the DNA binding activity of various ParB fragments. Gel mobility shift and DNase I protection assays showed that the first 141 residues of ParB are dispensable for the formation of the minimal, high affinity partition complex. A fragment missing only the last 16 amino acids of ParB bound specifically to parS, but binding was weak and was no longer stimulated by IHF. The ability of IHF to stimulate ParB binding to parS correlated with the ability of ParB to dimerize via its C terminus. Using full and partial parS sites, we show that two regions of ParB, one in the center and the other near the C terminus of the protein, interact with distinct sequences withinparS. Based on these data, we have proposed a model of how the ParB dimer binds parS to form the minimal partition complex.


Journal of Biological Chemistry | 2014

Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease

Maria V. Rogacheva; Carol M. Manhart; Cheng Chen; Alba Guarné; Jennifer A. Surtees; Eric Alani

Background: Meiotic crossing over requires resolution of Holliday junctions through actions of the DNA mismatch repair factor Mlh1-Mlh3. Results: Mlh1-Mlh3 is a metal-dependent, Msh2-Msh3-stimulated endonuclease. Conclusion: Our observations support a direct role for Mlh1-Mlh3 endonuclease activity in recombination and repair. Significance: An enzymatic activity is identified for a key recombination and repair factor. Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.


The EMBO Journal | 2013

Role of Saw1 in Rad1/Rad10 complex assembly at recombination intermediates in budding yeast

Fuyang Li; Junachao Dong; Robin Eichmiller; Cory Holland; Eugen Minca; Rohit Prakash; Patrick Sung; Eun Yong Shim; Jennifer A. Surtees; Sang Eun Lee

The Saccharomyces cerevisiae Rad1/Rad10 complex is a multifunctional, structure‐specific endonuclease that processes UV‐induced DNA lesions, recombination intermediates, and inter‐strand DNA crosslinks. However, we do not know how Rad1/Rad10 recognizes these structurally distinct target molecules or how it is incorporated into the protein complexes capable of incising divergent substrates. Here, we have determined the order and hierarchy of assembly of the Rad1/Rad10 complex, Saw1, Slx4, and Msh2/Msh3 complex at a 3′ tailed recombination intermediate. We found that Saw1 is a structure‐specific DNA binding protein with high affinity for splayed arm and 3′‐flap DNAs. By physical interaction, Saw1 facilitates targeting of Rad1 at 3′ tailed substrates in vivo and in vitro, and enhances 3′ tail cleavage by Rad1/Rad10 in a purified system in vitro. Our results allow us to formulate a model of Rad1/Rad10/Saw1 nuclease complex assembly and 3′ tail removal in recombination.


Cell Reports | 2012

Msh2-Msh3 Interferes with Okazaki Fragment Processing to Promote Trinucleotide Repeat Expansions

Athena Kantartzis; Gregory M. Williams; Lata Balakrishnan; Rick Roberts; Jennifer A. Surtees; Robert A. Bambara

Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntingtons disease. Although genetic evidence points to errors in DNA replication and/or repair as the cause of these diseases, clear molecular mechanisms have not been described. Here, we focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. Furthermore, we provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27) and DNA ligase I (Cdc9) in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging-strand DNA replication.


Nature Communications | 2016

Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions

Maxwell W. Brown; Yoori Kim; Gregory M. Williams; John D. Huck; Jennifer A. Surtees; Ilya J. Finkelstein

DNA-binding proteins search for specific targets via facilitated diffusion along a crowded genome. However, little is known about how crowded DNA modulates facilitated diffusion and target recognition. Here we use DNA curtains and single-molecule fluorescence imaging to investigate how Msh2–Msh3, a eukaryotic mismatch repair complex, navigates on crowded DNA. Msh2–Msh3 hops over nucleosomes and other protein roadblocks, but maintains sufficient contact with DNA to recognize a single lesion. In contrast, Msh2–Msh6 slides without hopping and is largely blocked by protein roadblocks. Remarkably, the Msh3-specific mispair-binding domain (MBD) licences a chimeric Msh2–Msh6(3MBD) to bypass nucleosomes. Our studies contrast how Msh2–Msh3 and Msh2–Msh6 navigate on a crowded genome and suggest how Msh2–Msh3 locates DNA lesions outside of replication-coupled repair. These results also provide insights into how DNA repair factors search for DNA lesions in the context of chromatin.


Genetics | 2015

MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts in Vivo

Gregory M. Williams; Jennifer A. Surtees

Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington’s disease, yet the pathway to expansion remains poorly understood. An important step in expansion is the shift from a stable TNR sequence to an unstable, expanding tract, which is thought to occur once a TNR attains a threshold length. Modeling of human data has indicated that TNR tracts are increasingly likely to expand as they increase in size and to do so in increments that are smaller than the repeat itself, but this has not been tested experimentally. Genetic work has implicated the mismatch repair factor MSH3 in promoting expansions. Using Saccharomyces cerevisiae as a model for CAG and CTG tract dynamics, we examined individual threshold-length TNR tracts in vivo over time in MSH3 and msh3Δ backgrounds. We demonstrate, for the first time, that these TNR tracts are highly dynamic. Furthermore, we establish that once such a tract has expanded by even a few repeat units, it is significantly more likely to expand again. Finally, we show that threshold- length TNR sequences readily accumulate net incremental expansions over time through a series of small expansion and contraction events. Importantly, the tracts were substantially stabilized in the msh3Δ background, with a bias toward contractions, indicating that Msh2-Msh3 plays an important role in shifting the expansion-contraction equilibrium toward expansion in the early stages of TNR tract expansion.


Journal of Molecular Biology | 2011

Multiple factors insulate Msh2-Msh6 mismatch repair activity from defects in Msh2 domain I.

Charanya Kumar; Sarah C. Piacente; Justin Sibert; Andrew R. Bukata; Jaime O'Connor; Eric Alani; Jennifer A. Surtees

DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair. In contrast, msh2Δ1 mutants show strong defects in Msh2-Msh3 functions. Interestingly, several mutations identified in patients with hereditary non-polyposis colorectal cancer map to domain I of Msh2; none have been found in MSH3. To understand the role of Msh2 domain I in MMR, we examined the consequences of combining the msh2Δ1 mutation with mutations in two distinct regions of MSH6 and those that increase cellular mutational load (pol3-01 and rad27). These experiments reveal msh2Δ1-specific phenotypes in Msh2-Msh6 repair, with significant effects on mutation rates. In vitro assays demonstrate that msh2Δ1-Msh6 DNA binding is less specific for DNA mismatches and produces an altered footprint on a mismatch DNA substrate. Together, these results provide evidence that, in vivo, multiple factors insulate MMR from defects in domain I of Msh2 and provide insights into how mutations in Msh2 domain I may cause hereditary non-polyposis colorectal cancer.


PLOS Genetics | 2017

Mlh3 mutations in baker’s yeast alter meiotic recombination outcomes by increasing noncrossover events genome-widede

Najla Al-Sweel; Vandana Raghavan; Abhishek Dutta; V. P. Ajith; Luigi Di Vietro; Nabila Khondakar; Carol M. Manhart; Jennifer A. Surtees; K. T. Nishant; Eric Alani

Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker’s yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing over. Mlh1-mlh3 representatives for each class were purified and characterized. Both Mlh1-mlh3-32 (MMR+, crossover-) and Mlh1-mlh3-45 (MMR-, crossover+) displayed wild-type endonuclease activities in vitro. Msh2-Msh3, an MSH complex that acts with Mlh1-Mlh3 in MMR, stimulated the endonuclease activity of Mlh1-mlh3-32 but not Mlh1-mlh3-45, suggesting that Mlh1-mlh3-45 is defective in MSH interactions. Whole genome recombination maps were constructed for wild-type and MMR+ crossover-, MMR- crossover+, endonuclease defective and null mlh3 mutants in an S288c/YJM789 hybrid background. Compared to wild-type, all of the mlh3 mutants showed increases in the number of noncrossover events, consistent with recombination intermediates being resolved through alternative recombination pathways. Our observations provide a structure-function map for Mlh3 that reveals the importance of protein-protein interactions in regulating Mlh1-Mlh3’s enzymatic activity. They also illustrate how defective meiotic components can alter the fate of meiotic recombination intermediates, providing new insights for how meiotic recombination pathways are regulated.

Collaboration


Dive into the Jennifer A. Surtees's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilya J. Finkelstein

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Robin Eichmiller

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cory Holland

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Sang Eun Lee

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Christopher Kim

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge