Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer B. Phillips is active.

Publication


Featured researches published by Jennifer B. Phillips.


Journal of Clinical Investigation | 2010

PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome

Inga Ebermann; Jennifer B. Phillips; Max C. Liebau; Robert K. Koenekoop; Bernhard Schermer; Irma Lopez; Ellen Schäfer; Anne-Françoise Roux; Claudia Dafinger; Antje Bernd; Eberhart Zrenner; Mireille Claustres; Bernardo Blanco; Gudrun Nürnberg; Peter Nürnberg; Rebecca Ruland; Monte Westerfield; Thomas Benzing; Hanno J. Bolz

Usher syndrome is a genetically heterogeneous recessive disease characterized by hearing loss and retinitis pigmentosa (RP). It frequently presents with unexplained, often intrafamilial, variability of the visual phenotype. Although 9 genes have been linked with Usher syndrome, many patients do not have mutations in any of these genes, suggesting that there are still unidentified genes involved in the syndrome. Here, we have determined that mutations in PDZ domain-containing 7 (PDZD7), which encodes a homolog of proteins mutated in Usher syndrome subtype 1C (USH1C) and USH2D, contribute to Usher syndrome. Mutations in PDZD7 were identified only in patients with mutations in other known Usher genes. In a set of sisters, each with a homozygous mutation in USH2A, a frame-shift mutation in PDZD7 was present in the sister with more severe RP and earlier disease onset. Further, heterozygous PDZD7 mutations were present in patients with truncating mutations in USH2A, G protein-coupled receptor 98 (GPR98; also known as USH2C), and an unidentified locus. We validated the human genotypes using zebrafish, and our findings were consistent with digenic inheritance of PDZD7 and GPR98, and with PDZD7 as a retinal disease modifier in patients with USH2A. Pdzd7 knockdown produced an Usher-like phenotype in zebrafish, exacerbated retinal cell death in combination with ush2a or gpr98, and reduced Gpr98 localization in the region of the photoreceptor connecting cilium. Our data challenge the view of Usher syndrome as a traditional Mendelian disorder and support the reclassification of Usher syndrome as an oligogenic disease.


Disease Models & Mechanisms | 2014

Zebrafish models in translational research: tipping the scales toward advancements in human health.

Jennifer B. Phillips; Monte Westerfield

Advances in genomics and next-generation sequencing have provided clinical researchers with unprecedented opportunities to understand the molecular basis of human genetic disorders. This abundance of information places new requirements on traditional disease models, which have the potential to be used to confirm newly identified pathogenic mutations and test the efficacy of emerging therapies. The unique attributes of zebrafish are being increasingly leveraged to create functional disease models, facilitate drug discovery, and provide critical scientific bases for the development of new clinical tools for the diagnosis and treatment of human disease. In this short review and the accompanying poster, we highlight a few illustrative examples of the applications of the zebrafish model to the study of human health and disease.


Developmental Cell | 2001

zyg-8, a Gene Required for Spindle Positioning in C. elegans, Encodes a Doublecortin-Related Kinase that Promotes Microtubule Assembly

Pierre Gönczy; Jean-Michel Bellanger; Matthew Kirkham; Andrei Pozniakowski; Karine Baumer; Jennifer B. Phillips; Anthony A. Hyman

Proper spindle positioning is essential for spatial control of cell division. Here, we show that zyg-8 plays a key role in spindle positioning during asymmetric division of one-cell stage C. elegans embryos by promoting microtubule assembly during anaphase. ZYG-8 harbors a kinase domain and a domain related to Doublecortin, a microtubule-associated protein (MAP) affected in patients with neuronal migration disorders. Sequencing of zyg-8 mutant alleles demonstrates that both domains are essential for function. ZYG-8 binds to microtubules in vitro, colocalizes with microtubules in vivo, and promotes stabilization of microtubules to drug or cold depolymerization in COS-7 cells. Our findings demonstrate that ZYG-8 is a MAP crucial for proper spindle positioning in C. elegans, and indicate that the function of the Doublecortin domain in modulating microtubule dynamics is conserved across metazoan evolution.


Molecular Biology and Evolution | 2013

Evolution of the Eye Transcriptome under Constant Darkness in Sinocyclocheilus Cavefish

Fanwei Meng; Ingo Braasch; Jennifer B. Phillips; Xiwen Lin; Tom A. Titus; Chunguang Zhang; John H. Postlethwait

In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms.


Disease Models & Mechanisms | 2011

Harmonin (Ush1c) is required in zebrafish Müller glial cells for photoreceptor synaptic development and function

Jennifer B. Phillips; Bernardo Blanco-Sánchez; Jennifer J. Lentz; Alexandra Tallafuss; Kornnika Khanobdee; Srirangan Sampath; Zachary G. Jacobs; Philip F. Han; Monalisa Mishra; Tom A. Titus; David S. Williams; Bronya Keats; Philip Washbourne; Monte Westerfield

SUMMARY Usher syndrome is the most prevalent cause of hereditary deaf-blindness, characterized by congenital sensorineural hearing impairment and progressive photoreceptor degeneration beginning in childhood or adolescence. Diagnosis and management of this disease are complex, and the molecular changes underlying sensory cell impairment remain poorly understood. Here we characterize two zebrafish models for a severe form of Usher syndrome, Usher syndrome type 1C (USH1C): one model is a mutant with a newly identified ush1c nonsense mutation, and the other is a morpholino knockdown of ush1c. Both have defects in hearing, balance and visual function from the first week of life. Histological analyses reveal specific defects in sensory cell structure that are consistent with these behavioral phenotypes and could implicate Müller glia in the retinal pathology of Usher syndrome. This study shows that visual defects associated with loss of ush1c function in zebrafish can be detected from the onset of vision, and thus could be applicable to early diagnosis for USH1C patients.


Human Mutation | 2014

Mutation of POC1B in a Severe Syndromic Retinal Ciliopathy

Bodo B. Beck; Jennifer B. Phillips; Malte P. Bartram; Jeremy Wegner; Michaela Thoenes; Andrea Pannes; Josephina Sampson; Raoul Heller; Heike Göbel; Friederike Koerber; Antje Neugebauer; Andrea M. Hedergott; Gudrun Nürnberg; Peter Nürnberg; Holger Thiele; Janine Altmüller; Mohammad R. Toliat; Simon Staubach; Kym M. Boycott; Enza Maria Valente; Andreas R. Janecke; Tobias Eisenberger; Carsten Bergmann; Lars Tebbe; Yang Wang; Yun-Dong Wu; Andrew M. Fry; Monte Westerfield; Uwe Wolfrum; Hanno J. Bolz

We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease (PKD). Targeted next‐generation sequencing for excluding mutations in known LCA and JBTS genes, homozygosity mapping, and whole‐exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body, and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for the formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106ProPOC1B in a family with nonsyndromic cone‐rod dystrophy. The phenotype associated with homozygous p.Arg106ProPOC1B may thus be highly variable, analogous to homozygous p.Leu710Ser in WDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe PKD.


Journal of Cell Science | 2003

Maternally expressed and partially redundant β-tubulins in Caenorhabditis elegans are autoregulated

Gregory C. Ellis; Jennifer B. Phillips; Sean M. O'Rourke; Rebecca Lyczak; Bruce Bowerman

The mitotic spindle, which partitions replicated chromosomes to daughter cells during cell division, is composed of microtubule assemblies of α/β-tubulin heterodimers. Positioning of the mitotic spindle influences the size and location of daughter cells, and can be important for the proper partitioning of developmental determinants. We describe two semi-dominant mis-sense mutations in tbb-2, one of two C. elegans β-tubulin genes that are maternally expressed and together are required for microtubule-dependent processes in the early embryo. These mutations result in a posteriorly displaced and misoriented mitotic spindle during the first cell division. In contrast, a probable tbb-2 null allele is recessive, and when homozygous results in less severe spindle positioning defects and only partially penetrant embryonic lethality. Two of the tbb-2 mutations result in reduced levels of TBB-2 protein, and increased levels of a second maternally expressed β-tubulin, TBB-1. However, levels of TBB-1 are not increased in a tbb-2 mutant with an allele that does not result in reduced levels of TBB-2 protein. We conclude that feedback regulation influences maternal β-tubulin expression in C. elegans, but cannot fully restore normal microtubule function in the absence of one β-tubulin isoform.


Journal of Cell Science | 2007

ZYG-9, TAC-1 and ZYG-8 together ensure correct microtubule function throughout the cell cycle of C. elegans embryos

Jean-Michel Bellanger; J. C. Carter; Jennifer B. Phillips; Coralie Canard; Bruce Bowerman; Pierre Gönczy

The early Caenorhabditis elegans embryo is well suited for investigating microtubule-dependent cell division processes. In the one-cell stage, the XMAP215 homologue ZYG-9, associated with the TACC protein TAC-1, promotes microtubule growth during interphase and mitosis, whereas the doublecortin domain protein ZYG-8 is required for anaphase spindle positioning. How ZYG-9, TAC-1 and ZYG-8 together ensure correct microtubule-dependent processes throughout the cell cycle is not fully understood. Here, we identify new temperature-sensitive alleles of zyg-9 and tac-1. Analysis of ZYG-9 and TAC-1 distribution in these mutants identifies amino acids important for centrosomal targeting and for stability of the two proteins. This analysis also reveals that TAC-1 is needed for correct ZYG-9 centrosomal enrichment. Moreover, we find that ZYG-9, but not TAC-1, is limiting for microtubule-dependent processes in one-cell-stage embryos. Using two of these alleles to rapidly inactivate ZYG-9-TAC-1 function, we establish that this complex is required for correct anaphase spindle positioning. Furthermore, we uncover that ZYG-9-TAC-1 and ZYG-8 function together during meiosis, interphase and mitosis. We also find that TAC-1 physically interacts with ZYG-8 through its doublecortin domain, and that in vivo TAC-1 and ZYG-8 are part of a complex that does not contain ZYG-9. Taken together, these findings indicate that ZYG-9-TAC-1 and ZYG-8 act in a partially redundant manner to ensure correct microtubule assembly throughout the cell cycle of early C. elegans embryos.


Gene Expression Patterns | 2013

The cone-dominant retina and the inner ear of zebrafish express the ortholog of CLRN1, the causative gene of human Usher syndrome type 3A.

Jennifer B. Phillips; Hanna Västinsalo; Jeremy Wegner; Aurélie Clément; Eeva-Marja Sankila; Monte Westerfield

Clarin-1 (CLRN1) is the causative gene in Usher syndrome type 3A, an autosomal recessive disorder characterized by progressive vision and hearing loss. CLRN1 encodes Clarin-1, a glycoprotein with homology to the tetraspanin family of proteins. Previous cell culture studies suggest that Clarin-1 localizes to the plasma membrane and interacts with the cytoskeleton. Mouse models demonstrate a role for the protein in mechanosensory hair bundle integrity, but the function of Clarin-1 in hearing remains unclear. Even less is known of its role in vision, because the Clrn1 knockout mouse does not exhibit a retinal phenotype and expression studies in murine retinas have provided conflicting results. Here, we describe cloning and expression analysis of the zebrafish clrn1 gene, and report protein localization of Clarin-1 in auditory and visual cells from embryonic through adult stages. We detect clrn1 transcripts as early as 24h post-fertilization, and expression is maintained through adulthood. In situ hybridization experiments show clrn1 transcripts enriched in mechanosensory hair cells and supporting cells of the inner ear and lateral line organ, photoreceptors, and cells of the inner retina. In mechanosensory hair cells, Clarin-1 is polarized to the apical cell body and the synapses. In the retina, Clarin-1 localizes to lateral cell contacts between photoreceptors and is associated with the outer limiting membrane and subapical processes emanating from Müller glial cells. We also find Clarin-1 protein in the outer plexiform, inner nuclear and ganglion cell layers of the retina. Given the importance of Clarin-1 function in the human retina, it is imperative to find an animal model with a comparable requirement. Our data provide a foundation for exploring the role of Clarin-1 in retinal cell function and survival in a diurnal, cone-dominant species.


Experimental Eye Research | 2018

Usherin defects lead to early-onset retinal dysfunction in zebrafish

Margo Dona; Ralph Slijkerman; Kimberly Lerner; Sanne Broekman; Jeremy Wegner; Taylor Howat; Theo Peters; Lisette Hetterschijt; Nanda Boon; Erik de Vrieze; Nasrin Sorusch; Uwe Wolfrum; Hannie Kremer; Stephan C. F. Neuhauss; Jingjing Zang; Maarten Kamermans; Monte Westerfield; Jennifer B. Phillips; Erwin van Wijk

&NA; Mutations in USH2A are the most frequent cause of Usher syndrome and autosomal recessive nonsyndromic retinitis pigmentosa. To unravel the pathogenic mechanisms underlying USH2A‐associated retinal degeneration and to evaluate future therapeutic strategies that could potentially halt the progression of this devastating disorder, an animal model is needed. The available Ush2a knock‐out mouse model does not mimic the human phenotype, because it presents with only a mild and late‐onset retinal degeneration. Using CRISPR/Cas9‐technology, we introduced protein‐truncating germline lesions into the zebrafish ush2a gene (ush2armc1: c.2337_2342delinsAC; p.Cys780GlnfsTer32 and ush2ab1245: c.15520_15523delinsTG; p.Ala5174fsTer). Homozygous mutants were viable and displayed no obvious morphological or developmental defects. Immunohistochemical analyses with antibodies recognizing the N‐ or C‐terminal region of the ush2a‐encoded protein, usherin, demonstrated complete absence of usherin in photoreceptors of ush2armc1, but presence of the ectodomain of usherin at the periciliary membrane of ush2ab1245‐derived photoreceptors. Furthermore, defects of usherin led to a reduction in localization of USH2 complex members, whirlin and Adgrv1, at the photoreceptor periciliary membrane of both mutants. Significantly elevated levels of apoptotic photoreceptors could be observed in both mutants when kept under constant bright illumination for three days. Electroretinogram (ERG) recordings revealed a significant and similar decrease in both a‐ and b‐wave amplitudes in ush2armc1 as well as ush2ab1245 larvae as compared to strain‐ and age‐matched wild‐type larvae. In conclusion, this study shows that mutant ush2a zebrafish models present with early‐onset retinal dysfunction that is exacerbated by light exposure. These models provide a better understanding of the pathophysiology underlying USH2A‐associated RP and a unique opportunity to evaluate future therapeutic strategies. HighlightsUsh2a zebrafish models present with early‐onset retinal dysfunction.Retinal dysfunction is observed mainly in the absence of photoreceptor degeneration.Exposure to constant bright illumination induces photoreceptor apoptosis.Whrna and Whrnb have high binding‐affinities for usherin and Adgrv1, respectively.The intracellular region of usherin has a critical role in retinal function.

Collaboration


Dive into the Jennifer B. Phillips's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge