Jennifer C. Lee
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer C. Lee.
Journal of the American Chemical Society | 2008
Jennifer C. Lee; Harry B. Gray; Jay R. Winkler
Variations in tryptophan fluorescence intensities confirm that copper(II) interacts with α-synuclein, a protein implicated in Parkinson’s disease. Trp4 fluorescence decay kinetics measured for the F4W protein show that Cu(II) binds tightly (Kd ∼ 100 nM) near the N-terminus at pH 7. Work on a F4W/H50S mutant indicates that a histidine imidazole is not a ligand in this high-affinity site.
Journal of Biological Chemistry | 2011
Thai Leong Yap; James M. Gruschus; Arash Velayati; Wendy Westbroek; Ehud Goldin; Nima Moaven; Ellen Sidransky; Jennifer C. Lee
The presynaptic protein α-synuclein (α-syn), particularly in its amyloid form, is widely recognized for its involvement in Parkinson disease (PD). Recent genetic studies reveal that mutations in the gene GBA are the most widespread genetic risk factor for parkinsonism identified to date. GBA encodes for glucocerebrosidase (GCase), the enzyme deficient in the lysosomal storage disorder, Gaucher disease (GD). In this work, we investigated the possibility of a physical linkage between α-syn and GCase, examining both wild type and the GD-related N370S mutant enzyme. Using fluorescence and nuclear magnetic resonance spectroscopy, we determined that α-syn and GCase interact selectively under lysosomal solution conditions (pH 5.5) and mapped the interaction site to the α-syn C-terminal residues, 118–137. This α-syn-GCase complex does not form at pH 7.4 and is stabilized by electrostatics, with dissociation constants ranging from 1.2 to 22 μm in the presence of 25 to 100 mm NaCl. Intriguingly, the N370S mutant form of GCase has a reduced affinity for α-syn, as does the inhibitor conduritol-β-epoxide-bound enzyme. Immunoprecipitation and immunofluorescence studies verified this interaction in human tissue and neuronal cell culture, respectively. Although our data do not preclude protein-protein interactions in other cellular milieux, we suggest that the α-syn-GCase association is favored in the lysosome, and that this noncovalent interaction provides the groundwork to explore molecular mechanisms linking PD with mutant GBA alleles.
Biochimica et Biophysica Acta | 2012
Candace M. Pfefferkorn; Zhiping Jiang; Jennifer C. Lee
Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinsons disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function.
Molecular Genetics and Metabolism | 2013
Thai Leong Yap; Arash Velayati; Ellen Sidransky; Jennifer C. Lee
Mutations in GBA, the gene encoding glucocerebrosidase, the lysosomal enzyme deficient in Gaucher disease increase the risk for developing Parkinson disease. Recent research suggests a relationship between glucocerebrosidase and the Parkinson disease-related amyloid-forming protein, α-synuclein; however, the specific molecular mechanisms responsible for association remain elusive. Previously, we showed that α-synuclein and glucocerebrosidase interact selectively under lysosomal conditions, and proposed that this newly identified interaction might influence cellular levels of α-synuclein by either promoting protein degradation and/or preventing aggregation. Here, we demonstrate that membrane-bound α-synuclein interacts with glucocerebrosidase, and that this complex formation inhibits enzyme function. Using site-specific fluorescence and Förster energy transfer probes, we mapped the protein-enzyme interacting regions on unilamellar vesicles. Our data suggest that on the membrane surface, the glucocerebrosidase-α-synuclein interaction involves a larger α-synuclein region compared to that found in solution. In addition, α-synuclein acts as a mixed inhibitor with an apparent IC(50) in the submicromolar range. Importantly, the membrane-bound, α-helical form of α-synuclein is necessary for inhibition. This glucocerebrosidase interaction and inhibition likely contribute to the mechanism underlying GBA-associated parkinsonism.
Journal of Biological Chemistry | 2015
Tatiana K. Rostovtseva; Philip A. Gurnev; Olga Protchenko; David P. Hoogerheide; Thai Leong Yap; Caroline C. Philpott; Jennifer C. Lee; Sergey M. Bezrukov
Background: The intrinsically disordered protein α-synuclein, a hallmark of Parkinson disease, is involved in mitochondrial dysfunction in neurodegeneration and directly interacts with mitochondria. Results: α-Synuclein regulates VDAC permeability; α-synuclein toxicity in yeast depends on VDAC. Conclusion: α-Synuclein both blocks VDAC and translocates via this channel across the mitochondrial outer membrane. Significance: (Patho)physiological roles of monomeric α-synuclein may originate from its interaction with VDAC. Participation of the small, intrinsically disordered protein α-synuclein (α-syn) in Parkinson disease (PD) pathogenesis has been well documented. Although recent research demonstrates the involvement of α-syn in mitochondrial dysfunction in neurodegeneration and suggests direct interaction of α-syn with mitochondria, the molecular mechanism(s) of α-syn toxicity and its effect on neuronal mitochondria remain vague. Here we report that at nanomolar concentrations, α-syn reversibly blocks the voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane that controls most of the metabolite fluxes in and out of the mitochondria. Detailed analysis of the blockage kinetics of VDAC reconstituted into planar lipid membranes suggests that α-syn is able to translocate through the channel and thus target complexes of the mitochondrial respiratory chain in the inner mitochondrial membrane. Supporting our in vitro experiments, a yeast model of PD shows that α-syn toxicity in yeast depends on VDAC. The functional interactions between VDAC and α-syn, revealed by the present study, point toward the long sought after physiological and pathophysiological roles for monomeric α-syn in PD and in other α-synucleinopathies.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Candace M. Pfefferkorn; Ryan P. McGlinchey; Jennifer C. Lee
Pmel17 is a functional amyloidogenic protein whose fibrils act as scaffolds for pigment deposition in human skin and eyes. We have used the repeat domain (RPT, residues 315–444), an essential luminal polypeptide region of Pmel17, as a model system to study conformational changes from soluble unstructured monomers to β-sheet-containing fibrils. Specifically, we report on the effects of solution pH (4 → 7) mimicking pH conditions of melanosomes, acidic organelles where Pmel17 fibrils are formed. Local, secondary, and fibril structure were monitored via intrinsic Trp fluorescence, circular dichroism spectroscopy, and transmission electron microscopy, respectively. We find that W423 is a highly sensitive probe of amyloid assembly with spectral features reflecting local conformational and fibril morphological changes. A critical pH regime (5 ± 0.5) was identified for fibril formation suggesting the involvement of at least three carboxylic acids in the structural rearrangement necessary for aggregation. Moreover, we demonstrate that RPT fibril morphology can be transformed directly by changing solution pH. Based on these results, we propose that intramelanosomal pH regulates Pmel17 amyloid formation and its subsequent dissolution in vivo.
Journal of Physical Chemistry B | 2010
Candace M. Pfefferkorn; Jennifer C. Lee
Understanding how environmental factors affect the conformational dynamics of alpha-synuclein (alpha-syn) is of great importance because the accumulation and deposit of aggregated alpha-syn in the brain are intimately connected to Parkinsons disease etiology. Measurements of steady-state and time-resolved fluorescence of single tryptophan-containing alpha-syn variants have revealed distinct phospholipid vesicle and micelle interactions at residues 4, 39, 94, and 125. Our circular dichroism data confirm that Trp mutations do not affect alpha-syn membrane binding properties (apparent association constant K(a)app approximately 1 x 10(7) M(-1) for all synucleins) saturating at an estimated lipid-to-protein molar ratio of 380 or approximately 120 proteins covering approximately 7% of the surface area of an 80 nm diameter vesicle. Fluorophores at positions 4 and 94 are the most sensitive to the lipid bilayer with pronounced spectral blue-shifts (W4: Delta(lambda)max approximately 23 nm; W94: Delta(lambda)max approximately 10 nm) and quantum yield increases (W4, W94: approximately 3 fold), while W39 and W125 remain primarily water-exposed. Time-resolved fluorescence data show that all sites (except W125) have subpopulations that interact with the membrane.
Journal of Physical Chemistry B | 2008
Megan Grabenauer; Summer L. Bernstein; Jennifer C. Lee; Thomas Wyttenbach; Nicholas F. Dupuis; Harry B. Gray; Jay R. Winkler; Michael T. Bowers
Aggregation of alpha-synuclein (alpha-syn), a protein implicated in Parkinsons disease (PD), is believed to progress through formation of a partially folded intermediate. Using nanoelectrospray ionization (nano-ESI) mass spectrometry combined with ion mobility measurements we found evidence for a highly compact partially folded family of structures for alpha-syn and its disease-related A53T mutant with net charges of -6, -7, and -8. For the other early onset PD mutant, A30P, this highly compact population was only evident when the protein had a net charge of -6. When bound to spermine near physiologic pH, all three proteins underwent a charge reduction from the favored solution charge state of -10 to a net charge of -6. This charge reduction is accompanied by a dramatic size reduction of about a factor of 2 (cross section of 2600 A2 (-10 charge state) down to 1430 A2 (-6 charge state)). We conclude that spermine increases the aggregation rate of alpha-syn by inducing a collapsed conformation, which then proceeds to form aggregates.
Journal of the American Chemical Society | 2013
Zhiping Jiang; Michel de Messieres; Jennifer C. Lee
α-Synuclein (α-Syn), an intrinsically disordered protein, is associated with Parkinsons disease. Though molecular pathogenic mechanisms are ill-defined, mounting evidence connects its amyloid forming and membrane binding propensities to disease etiology. Contrary to recent data suggesting that membrane remodeling by α-syn involves anionic phospholipids and helical structure, we discovered that the protein deforms vesicles with no net surface charge (phosphatidylcholine, PC) into tubules (average diameter ∼20 nm). No discernible secondary structural changes were detected by circular dichroism spectroscopy upon the addition of vesicles. Notably, membrane remodeling inhibits α-syn amyloid formation affecting both lag and growth phases. Using five single tryptophan variants and time-resolved fluorescence anisotropy measurements, we determined that α-syn influences bilayer structure with surprisingly weak interaction and no site specificity (partition constant, Kp ∼ 300 M(-1)). Vesicle deformation by α-syn under a variety of different lipid/protein conditions is characterized via transmission electron microscopy. As cellular membranes are enriched in PC lipids, these results support possible biological consequences for α-syn induced membrane remodeling related to both function and pathogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Jennifer C. Lee; K. Cecilia Engman; F. Akif Tezcan; Harry B. Gray; Jay R. Winkler
We employed fluorescence energy-transfer probes to investigate the polypeptide dynamics accompanying cytochrome c′ folding. Analysis of fluorescence energy-transfer kinetics from wild-type Trp-72 or Trp-32 in a crystallographically characterized (1.78 Å) Q1A/F32W/W72F mutant shows that there is structural heterogeneity in denatured cytochrome c′. Even at guanidine hydrochloride concentrations well beyond the unfolding transition, a substantial fraction of the polypeptides (≈50%) adopts compact conformations (tryptophan-to-heme distance, ≈25 Å) in both pseudo-wild-type (Q1A) and mutant proteins. A burst phase (≤5 ms) is revealed when stopped flow-triggered refolding is probed by tryptophan intensity: measurements on the Q1A protein show that ≈75% of the Trp-72 fluorescence (83% for Trp-32) is quenched within the mixing deadtime, suggesting that most of the polypeptides have collapsed.