Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer Daub is active.

Publication


Featured researches published by Jennifer Daub.


Nucleic Acids Research | 2009

Rfam: updates to the RNA families database.

Paul P. Gardner; Jennifer Daub; John G. Tate; Eric P. Nawrocki; Diana L. Kolbe; Stinus Lindgreen; Adam C. Wilkinson; Robert D. Finn; Sam Griffiths-Jones; Sean R. Eddy; Alex Bateman

Rfam is a collection of RNA sequence families, represented by multiple sequence alignments and covariance models (CMs). The primary aim of Rfam is to annotate new members of known RNA families on nucleotide sequences, particularly complete genomes, using sensitive BLAST filters in combination with CMs. A minority of families with a very broad taxonomic range (e.g. tRNA and rRNA) provide the majority of the sequence annotations, whilst the majority of Rfam families (e.g. snoRNAs and miRNAs) have a limited taxonomic range and provide a limited number of annotations. Recent improvements to the website, methodologies and data used by Rfam are discussed. Rfam is freely available on the Web at http://rfam.sanger.ac.uk/and http://rfam.janelia.org/.


Science | 2007

Draft Genome of the Filarial Nematode Parasite Brugia malayi

Elodie Ghedin; Shiliang Wang; David J. Spiro; Elisabet Caler; Qi Zhao; Jonathan Crabtree; Jonathan E. Allen; Arthur L. Delcher; David B. Guiliano; Diego Miranda-Saavedra; Samuel V. Angiuoli; Todd Creasy; Paolo Amedeo; Brian J. Haas; Najib M. El-Sayed; Jennifer R. Wortman; Tamara Feldblyum; Luke J. Tallon; Michael C. Schatz; Martin Shumway; Hean Koo; Seth Schobel; Mihaela Pertea; Mihai Pop; Owen White; Geoffrey J. Barton; Clotilde K. S. Carlow; Michael J. Crawford; Jennifer Daub; Matthew W. Dimmic

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.


Nucleic Acids Research | 2013

Rfam 11.0: 10 years of RNA families

Sarah W. Burge; Jennifer Daub; Ruth Y. Eberhardt; John G. Tate; Lars Barquist; Eric P. Nawrocki; Sean R. Eddy; Paul P. Gardner; Alex Bateman

The Rfam database (available via the website at http://rfam.sanger.ac.uk and through our mirror at http://rfam.janelia.org) is a collection of non-coding RNA families, primarily RNAs with a conserved RNA secondary structure, including both RNA genes and mRNA cis-regulatory elements. Each family is represented by a multiple sequence alignment, predicted secondary structure and covariance model. Here we discuss updates to the database in the latest release, Rfam 11.0, including the introduction of genome-based alignments for large families, the introduction of the Rfam Biomart as well as other user interface improvements. Rfam is available under the Creative Commons Zero license.


Nucleic Acids Research | 2015

Rfam 12.0: updates to the RNA families database

Eric P. Nawrocki; Sarah W. Burge; Alex Bateman; Jennifer Daub; Ruth Y. Eberhardt; Sean R. Eddy; Evan W. Floden; Paul P. Gardner; Thomas A. Jones; John G. Tate; Robert D. Finn

The Rfam database (available at http://rfam.xfam.org) is a collection of non-coding RNA families represented by manually curated sequence alignments, consensus secondary structures and annotation gathered from corresponding Wikipedia, taxonomy and ontology resources. In this article, we detail updates and improvements to the Rfam data and website for the Rfam 12.0 release. We describe the upgrade of our search pipeline to use Infernal 1.1 and demonstrate its improved homology detection ability by comparison with the previous version. The new pipeline is easier for users to apply to their own data sets, and we illustrate its ability to annotate RNAs in genomic and metagenomic data sets of various sizes. Rfam has been expanded to include 260 new families, including the well-studied large subunit ribosomal RNA family, and for the first time includes information on short sequence- and structure-based RNA motifs present within families.


Nucleic Acids Research | 2011

Rfam: Wikipedia, clans and the “decimal” release

Paul P. Gardner; Jennifer Daub; John G. Tate; Benjamin L. Moore; Isabelle H. Osuch; Sam Griffiths-Jones; Robert D. Finn; Eric P. Nawrocki; Diana L. Kolbe; Sean R. Eddy; Alex Bateman

The Rfam database aims to catalogue non-coding RNAs through the use of sequence alignments and statistical profile models known as covariance models. In this contribution, we discuss the pros and cons of using the online encyclopedia, Wikipedia, as a source of community-derived annotation. We discuss the addition of groupings of related RNA families into clans and new developments to the website. Rfam is available on the Web at http://rfam.sanger.ac.uk.


Genome Biology and Evolution | 2010

Ecdysozoan Mitogenomics: Evidence for a Common Origin of the Legged Invertebrates, the Panarthropoda

Omar Rota-Stabelli; Ehsan Kayal; Dianne Gleeson; Jennifer Daub; Jeffrey L. Boore; Maximilian J. Telford; Davide Pisani; Mark Blaxter; Dennis V. Lavrov

Ecdysozoa is the recently recognized clade of molting animals that comprises the vast majority of extant animal species and the most important invertebrate model organisms—the fruit fly and the nematode worm. Evolutionary relationships within the ecdysozoans remain, however, unresolved, impairing the correct interpretation of comparative genomic studies. In particular, the affinities of the three Panarthropoda phyla (Arthropoda, Onychophora, and Tardigrada) and the position of Myriapoda within Arthropoda (Mandibulata vs. Myriochelata hypothesis) are among the most contentious issues in animal phylogenetics. To elucidate these relationships, we have determined and analyzed complete or nearly complete mitochondrial genome sequences of two Tardigrada, Hypsibius dujardini and Thulinia sp. (the first genomes to date for this phylum); one Priapulida, Halicryptus spinulosus; and two Onychophora, Peripatoides sp. and Epiperipatus biolleyi; and a partial mitochondrial genome sequence of the Onychophora Euperipatoides kanagrensis. Tardigrada mitochondrial genomes resemble those of the arthropods in term of the gene order and strand asymmetry, whereas Onychophora genomes are characterized by numerous gene order rearrangements and strand asymmetry variations. In addition, Onychophora genomes are extremely enriched in A and T nucleotides, whereas Priapulida and Tardigrada are more balanced. Phylogenetic analyses based on concatenated amino acid coding sequences support a monophyletic origin of the Ecdysozoa and the position of Priapulida as the sister group of a monophyletic Panarthropoda (Tardigrada plus Onychophora plus Arthropoda). The position of Tardigrada is more problematic, most likely because of long branch attraction (LBA). However, experiments designed to reduce LBA suggest that the most likely placement of Tardigrada is as a sister group of Onychophora. The same analyses also recover monophyly of traditionally recognized arthropod lineages such as Arachnida and of the highly debated clade Mandibulata.


Parasitology | 2000

A survey of genes expressed in adults of the human hookworm, Necator americanus

Jennifer Daub; Alex Loukas; David I. Pritchard; Mark Blaxter

Hookworms are gut-dwelling, blood-feeding nematodes that infect hundreds of millions of people, particularly in the tropics. As part of a program aiming to define novel drug targets and vaccine candidates for human parasitic nematodes, genes expressed in adults of the human hookworm Necator americanus were surveyed by the expressed sequence tag approach. In total 161 new hookworm genes were identified. For the majority of these, a function could be assigned by homology. The dataset includes proteases, protease inhibitors, a lipid binding protein, C-type lectins, an anti-bacterial factor, globins and other genes of interest from a drug or vaccine development viewpoint. Three different classes of small, secreted proteins were identified that may be involved in the host-parasite interaction, including potential potassium channel blocking peptides. One third of the genes were novel. These included highly expressed, secreted (glyco)proteins which may be part of the excretory-secretory products of these important pathogens. Of particular interest are a family of 9 genes with similarity to the immunomodulatory protein, neutrophil inhibitory factor, that may play a role in establishing an immunocompromised niche for this successful parasite.


International Journal for Parasitology | 2000

The filarial genome project: analysis of the nuclear, mitochondrial and endosymbiont genomes of Brugia malayi

Steven Williams; Michelle Lizotte-Waniewski; Jeremy M. Foster; David B. Guiliano; Jennifer Daub; Alan L. Scott; Barton E. Slatko; Mark Blaxter

The Filarial Genome Project (FGP) was initiated in 1994 under the auspices of the World Health Organisation. Brugia malayi was chosen as the model organism due to the availability of all life cycle stages for the construction of cDNA libraries. To date, over 20000 cDNA clones have been partially sequenced and submitted to the EST database (dbEST). These ESTs define approximately 7000 new Brugia genes. Analysis of the EST dataset provides useful information on the expression pattern of the most abundantly expressed Brugia genes. Some highly expressed genes have been identified that are expressed in all stages of the parasites life cycle, while other highly expressed genes appear to be stage-specific. To elucidate the structure of the Brugia genome and to provide a basis for comparison to the Caenorhabditis elegans genome, the FGP is also constructing a physical map of the Brugia chromosomes and is sequencing genomic BAC clones. In addition to the nuclear genome, B. malayi possesses two other genomes: the mitochondrial genome and the genome of a bacterial endosymbiont. Eighty percent of the mitochondrial genome of B. malayi has been sequenced and is being compared to mitochondrial sequences of other nematodes. The bacterial endosymbiont genome found in B. malayi is closely related to the Wolbachia group of rickettsia-like bacteria that infects many insect species. A set of overlapping BAC clones is being assembled to cover the entire bacterial genome. Currently, half of the bacterial genome has been assembled into four contigs. A consortium has been established to sequence the entire genome of the Brugia endosymbiont. The sequence and mapping data provided by the FGP is being utilised by the nematode research community to develop a better understanding of the biology of filarial parasites and to identify new vaccine candidates and drug targets to aid the elimination of human filariasis.


Proceedings of the Royal Society of London B: Biological Sciences | 2004

DNA taxonomy of a neglected animal phylum: an unexpected diversity of tardigrades.

Mark Blaxter; Ben Elsworth; Jennifer Daub

A molecular survey technique was used to investigate the diversity of terrestrial tardigrades from three sites within Scotland. Ribosomal small subunit sequence was used to classify specimens into molecular operational taxonomic units (MOTU). Most MOTU were identified to the generic level using digital voucher photography. Thirty–two MOTU were defined, a surprising abundance given that the documented British fauna is 68 species. Some tardigrade MOTU were shared between the two rural collection sites, but no MOTU were found in both urban and rural sites, which conflicts with models of ubiquity of meiofaunal taxa. The patterns of relatedness of MOTU were particularly intriguing, with some forming clades with low levels of divergence, suggestive of taxon flocks. Some morphological taxa contained well–separated MOTU, perhaps indicating the existence of cryptic taxa. DNA sequence–based MOTU proved to be a revealing method for meiofaunal diversity studies.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 2002

The Brugia malayi genome project: expressed sequence tags and gene discovery

Mark Blaxter; Jennifer Daub; David B. Guiliano; John Parkinson; Claire Whitton

To advance and facilitate molecular studies of Brugia malayi, one of the causative agents of human lymphatic filariasis, an expressed sequence tag (EST)-based gene discovery programme has been carried out. Over 22,000 ESTs have been produced and deposited in the public databases by a consortium of laboratories from endemic and non-endemic countries. The ESTs have been analysed using custom informatic tools to reveal patterns of individual gene expression that may point to potential targets for future research on anti-filarial drugs and vaccines. Many genes first discovered as ESTs are now being analysed by researchers for immunodiagnostic, vaccine and drug target potential. Building on the success of the B. malayi EST programme, significant EST datasets are being generated for a number of other major parasites of humans and domesticated animals, and model parasitic species.

Collaboration


Dive into the Jennifer Daub's collaboration.

Top Co-Authors

Avatar

Mark Blaxter

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John G. Tate

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Bateman

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric P. Nawrocki

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge