Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer E. Cowan is active.

Publication


Featured researches published by Jennifer E. Cowan.


Journal of Experimental Medicine | 2013

The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development.

Jennifer E. Cowan; Sonia M. Parnell; Kyoko Nakamura; Jorge Caamano; Peter J. L. Lane; Eric J. Jenkinson; William E. Jenkinson; Graham Anderson

The thymic medulla and an intact mTEC compartment are needed for the development of nTreg cells and negative selection of conventional T cells but not their further maturation.


Journal of Immunology | 2014

An Essential Role for Medullary Thymic Epithelial Cells during the Intrathymic Development of Invariant NKT Cells

Andrea J. White; William E. Jenkinson; Jennifer E. Cowan; Sonia M. Parnell; Andrea Bacon; Nick D. Jones; Eric J. Jenkinson; Graham Anderson

In the thymus, interactions with both cortical and medullary microenvironments regulate the development of self-tolerant conventional CD4+ and CD8+ αβT cells expressing a wide range of αβTCR specificities. Additionally, the cortex is also required for the development of invariant NKT (iNKT) cells, a specialized subset of T cells that expresses a restricted αβTCR repertoire and is linked to the regulation of innate and adaptive immune responses. Although the role of the cortex in this process is to enable recognition of CD1d molecules expressed by CD4+CD8+ thymocyte precursors, the requirements for additional thymus microenvironments during iNKT cell development are unknown. In this study, we reveal a role for medullary thymic epithelial cells (mTECs) during iNKT cell development in the mouse thymus. This requirement for mTECs correlates with their expression of genes required for IL-15 trans-presentation, and we show that soluble IL-15/IL-15Rα complexes restore iNKT cell development in the absence of mTECs. Furthermore, mTEC development is abnormal in iNKT cell–deficient mice, and early stages in iNKT cell development trigger receptor activator for NF-κB ligand–mediated mTEC development. Collectively, our findings demonstrate that intrathymic iNKT cell development requires stepwise interactions with both the cortex and the medulla, emphasizing the importance of thymus compartmentalization in the generation of both diverse and invariant αβT cells. Moreover, the identification of a novel requirement for iNKT cells in thymus medulla development further highlights the role of both innate and adaptive immune cells in thymus medulla formation.


Journal of Immunology | 2012

Developmentally Regulated Availability of RANKL and CD40 Ligand Reveals Distinct Mechanisms of Fetal and Adult Cross-Talk in the Thymus Medulla

Guillaume E. Desanti; Jennifer E. Cowan; Song Baik; Sonia M. Parnell; Andrea J. White; Josef M. Penninger; Peter J. L. Lane; Eric J. Jenkinson; William E. Jenkinson; Graham Anderson

T cell tolerance in the thymus is a key step in shaping the developing T cell repertoire. Thymic medullary epithelial cells play multiple roles in this process, including negative selection of autoreactive thymocytes, influencing thymic dendritic cell positioning, and the generation of Foxp3+ regulatory T cells. Previous studies show that medullary thymic epithelial cell (mTEC) development involves hemopoietic cross-talk, and numerous TNFR superfamily members have been implicated in this process. Whereas CD40 and RANK represent key examples, interplay between these receptors, and the individual cell types providing their ligands at both fetal and adult stages of thymus development, remain unclear. In this study, by analysis of the cellular sources of receptor activator for NF-κB ligand (RANKL) and CD40L during fetal and adult cross-talk in the mouse, we show that the innate immune cell system drives initial fetal mTEC development via expression of RANKL, but not CD40L. In contrast, cross-talk involving the adaptive immune system involves both RANKL and CD40L, with analysis of distinct subsets of intrathymic CD4+ T cells revealing a differential contribution of CD40L by conventional, but not Foxp3+ regulatory, T cells. We also provide evidence for a stepwise involvement of TNFRs in mTEC development, with CD40 upregulation induced by initial RANK signaling subsequently controlling proliferation within the mTEC compartment. Collectively, our findings show how multiple hemopoietic cell types regulate mTEC development through differential provision of RANKL/CD40L during ontogeny, revealing molecular differences in fetal and adult hemopoietic cross-talk. They also suggest a stepwise process of mTEC development, in which RANK is a master player in controlling the availability of other TNFR family members.


Journal of Immunology | 2014

Differential Requirement for CCR4 and CCR7 during the Development of Innate and Adaptive αβT Cells in the Adult Thymus

Jennifer E. Cowan; Nicholas I. McCarthy; Sonia M. Parnell; Andrea J. White; Andrea Bacon; Arnauld Serge; Magali Irla; Peter J. L. Lane; Eric J. Jenkinson; William E. Jenkinson; Graham Anderson

αβT cell development depends upon serial migration of thymocyte precursors through cortical and medullary microenvironments, enabling specialized stromal cells to provide important signals at specific stages of their development. Although conventional αβT cells are subject to clonal deletion in the medulla, entry into the thymus medulla also fosters αβT cell differentiation. For example, during postnatal periods, the medulla is involved in the intrathymic generation of multiple αβT cell lineages, notably the induction of Foxp3+ regulatory T cell development and the completion of invariant NKT cell development. Although migration of conventional αβT cells to the medulla is mediated by the chemokine receptor CCR7, how other T cell subsets gain access to medullary areas during their normal development is not clear. In this study, we show that combining a panel of thymocyte maturation markers with cell surface analysis of CCR7 and CCR4 identifies distinct stages in the development of multiple αβT cell lineages in the thymus. Although Aire regulates expression of the CCR4 ligands CCL17 and CCL22, we show that CCR4 is dispensable for thymocyte migration and development in the adult thymus, demonstrating defective T cell development in Aire−/− mice is not because of a loss of CCR4-mediated migration. Moreover, we reveal that CCR7 controls the development of invariant NKT cells by enabling their access to IL-15 trans-presentation in the thymic medulla and influences the balance of early and late intrathymic stages of Foxp3+ regulatory T cell development. Collectively, our data identify novel roles for CCR7 during intrathymic T cell development, highlighting its importance in enabling multiple αβT cell lineages to access the thymic medulla.


European Journal of Immunology | 2015

Thymus medulla fosters generation of natural Treg cells, invariant γδ T cells, and invariant NKT cells: What we learn from intrathymic migration

Jennifer E. Cowan; William E. Jenkinson; Graham Anderson

The organization of the thymus into distinct cortical and medullary regions enables it to control the step‐wise migration and development of immature T‐cell precursors. Such a process provides access to specialized cortical and medullary thymic epithelial cells at defined stages of maturation, ensuring the generation of self‐tolerant and MHC‐restricted conventional CD4+ and CD8+ αβ T cells. The migratory cues and stromal cell requirements that regulate the development of conventional αβ T cells have been well studied. However, the thymus also fosters the generation of several immunoregulatory T‐cell populations that form key components of both innate and adaptive immune responses. These include Foxp3+ natural regulatory T cells, invariant γδ T cells, and CD1d‐restricted invariant natural killer T cells (iNKT cells). While less is known about the intrathymic requirements of these nonconventional T cells, recent studies have highlighted the importance of the thymus medulla in their development. Here, we review recent findings on the mechanisms controlling the intrathymic migration of distinct T‐cell subsets, and relate this to knowledge of the microenvironmental requirements of these cells.


Cell Reports | 2016

CCR7 Controls Thymus Recirculation, but Not Production and Emigration, of Foxp3+ T Cells

Jennifer E. Cowan; Nicholas I. McCarthy; Graham Anderson

Summary Current models of Foxp3+ regulatory T cell (Treg) development involve CCR7-mediated migration of thymocytes into the thymus medulla to enable essential interactions with medullary epithelium. However, increased Foxp3+ thymic Treg numbers in Ccr7−/− mice challenge this view, and the role of CCR7 in Treg development, emigration, and/or recirculation is unknown. Here, we have examined CCR7 and Rag2pGFP levels during Treg development and generated Rag2pGFPCcr7−/− mice to study its impact on the intrathymic Treg pool. We reveal surprising developmental heterogeneity in thymocytes described as Treg precursors, showing that they contain recirculating CCR6+CCR7−Rag2pGFP− T cells. Although CCR7 defines bona fide Rag2GFP+ Treg precursors, it is not required for Treg production and emigration. Rather, we show that lack of CCR7 renders the thymus more receptive to Treg thymus homing. Our study reveals a role for CCR7 in limiting Treg recirculation back to the thymus and enables separation of the mechanisms controlling Treg production and thymic recirculation.


Journal of Immunology | 2015

Osteoprotegerin-Mediated Homeostasis of Rank+ Thymic Epithelial Cells Does Not Limit Foxp3+ Regulatory T Cell Development.

Nicholas I. McCarthy; Jennifer E. Cowan; Kyoko Nakamura; Andrea Bacon; Song Baik; Andrea J. White; Sonia M. Parnell; Eric J. Jenkinson; William E. Jenkinson; Graham Anderson

In the thymus, medullary thymic epithelial cells (mTEC) regulate T cell tolerance via negative selection and Foxp3+ regulatory T cell (Treg) development, and alterations in the mTEC compartment can lead to tolerance breakdown and autoimmunity. Both the receptor activator for NF-κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) axis and expression of the transcriptional regulator Aire are involved in the regulation of thymus medullary microenvironments. However, their impact on the mechanisms controlling mTEC homeostasis is poorly understood, as are the processes that enable the thymus medulla to support the balanced production of mTEC-dependent Foxp3+ Treg. In this study, we have investigated the control of mTEC homeostasis and examined how this process impacts the efficacy of Foxp3+ Treg development. Using newly generated RANK Venus reporter mice, we identify distinct RANK+ subsets that reside within both the mTEChi and mTEClo compartments and that represent direct targets of OPG-mediated control. Moreover, by mapping OPG expression to a subset of Aire+ mTEC, our data show how cis- and trans-acting mechanisms are able to control the thymus medulla by operating on multiple mTEC targets. Finally, we show that whereas the increase in mTEC availability in OPG-deficient (Tnfrsf11b−/−) mice impacts the intrathymic Foxp3+ Treg pool by enhancing peripheral Treg recirculation back to the thymus, it does not alter the number of de novo Rag2pGFP+Foxp3+ Treg that are generated. Collectively, our study defines patterns of RANK expression within the thymus medulla, and it shows that mTEC homeostasis is not a rate-limiting step in intrathymic Foxp3+ Treg production.


Current Topics in Microbiology and Immunology | 2013

Mechanisms of Thymus Medulla Development and Function

Graham Anderson; Song Baik; Jennifer E. Cowan; Amanda M. Holland; Nicholas I. McCarthy; Kyoko Nakamura; Sonia M. Parnell; Andrea J. White; Peter J. L. Lane; Eric J. Jenkinson; William E. Jenkinson

The development of CD4(+) helper and CD8(+) cytotoxic T-cells expressing the αβ form of the T-cell receptor (αβTCR) takes place in the thymus, a primary lymphoid organ containing distinct cortical and medullary microenvironments. While the cortex represents a site of early T-cell precursor development, and the positive selection of CD4(+)8(+) thymocytes, the thymic medulla plays a key role in tolerance induction, ensuring that thymic emigrants are purged of autoreactive αβTCR specificities. In recent years, advances have been made in understanding the development and function of thymic medullary epithelial cells, most notably the subset defined by expression of the Autoimmune Regulator (Aire) gene. Here, we summarize current knowledge of the developmental mechanisms regulating thymus medulla development, and examine the role of the thymus medulla in recessive (negative selection) and dominant (T-regulatory cell) tolerance.


Journal of Autoimmunity | 2015

Natural Th17 cells are critically regulated by functional medullary thymic microenvironments.

William E. Jenkinson; Nicholas I. McCarthy; Emma E. Dutton; Jennifer E. Cowan; Sonia M. Parnell; Andrea J. White; Graham Anderson

The thymic medulla is critical for the enforcement of central tolerance. In addition to deletion of auto-reactive T-cells, the thymic medulla supports the maturation of heterogeneous natural αβT-cells linked to tolerance mechanisms. Natural IL-17-secreting CD4+αβT-cells (nTh17) represent recently described natural αβT-cells that mature and undergo functional priming intrathymically. Despite a proposed potential to impact upon either protective or pathological inflammatory responses, the intrathymic mechanisms regulating the balance of nTh17 development are unclear. Here we compare the development of distinct natural αβT-cells in the thymus. We reveal that thymic stromal MHC class II expression and RelB-dependent medullary thymic epithelial cells (mTEC), including Aire+ mTEC, are an essential requirement for nTh17 development. nTh17 demonstrate a partial, non-redundant requirement for both ICOS-ligand and CD80/86 costimulation, with a dispensable role for CD80/86 expression by thymic epithelial cells. Although mTEC constitutively expressed inducible nitric oxide synthase (iNOS), a critical negative regulator of conventional Th17 differentiation, iNOS was not essential to constrain thymic nTh17. These findings highlight the critical role of the thymic medulla in the differential regulation of novel natural αβT-cell subsets, and reveal additional layers of thymic medullary regulation of T-cell driven autoimmunity and inflammation.


European Journal of Immunology | 2018

Aire controls the recirculation of murine Foxp3+ regulatory T-cells back to the thymus

Jennifer E. Cowan; Song Baik; Nicholas I. McCarthy; Sonia M. Parnell; Andrea J. White; William E. Jenkinson; Graham Anderson

In the thymus, medullary thymic epithelial cells (mTEC) determine the fate of newly selected CD4+ and CD8+ single positive (SP) thymocytes. For example, mTEC expression of Aire controls intrathymic self‐antigen availability for negative selection. Interestingly, alterations in both Foxp3+ Regulatory T‐cells (T‐Reg) and conventional SP thymocytes in Aire−/− mice suggest additional, yet poorly understood, roles for Aire during intrathymic T‐cell development. To examine this, we analysed thymocytes from Aire−/− mice using Rag2GFP and Foxp3 expression, and a recently described CD69/MHCI subset definition of post‐selection CD4+ conventional thymocytes. We show that while Aire is dispensable for de novo generation of conventional αβT‐cells, it plays a key role in controlling the intrathymic T‐Reg pool. Surprisingly, a decline in intrathymic T‐Reg in Aire−/− mice maps to a reduction in mature recirculating Rag2GFP− T‐Reg that express CCR6 and re‐enter the thymus from the periphery. Furthermore, we show mTEC expression of the CCR6 ligand CCL20 is reduced in Aire−/− mice, and that CCR6 is required for T‐Reg recirculation back to the thymus. Collectively, our study re‐defines requirements for late stage intrathymic αβT‐cell development, and demonstrates that Aire controls a CCR6‐CCL20 axis that determines the developmental makeup of the intrathymic T‐Reg pool.

Collaboration


Dive into the Jennifer E. Cowan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Song Baik

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyoko Nakamura

Medical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge