Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer E. Purcell is active.

Publication


Featured researches published by Jennifer E. Purcell.


Hydrobiologia | 2001

Interactions of pelagic cnidarians and ctenophores with fish: a review

Jennifer E. Purcell; Mary Needler Arai

Medusae, siphonophores and ctenophores (here grouped as ‘pelagic coelenterates’) interact with fish in several ways. Some interactions are detrimental to fish populations, such as predation by gelatinous species on pelagic eggs and larvae of fish, the potential competition for prey among pelagic coelenterates and fish larvae and zooplanktivorous fish species, and pelagic coelenterates serving as intermediate hosts for fish parasites. Other interactions are positive for fish, such as predation by fish on gelatinous species and commensal associations among fish and pelagic coelenterates. The interactions range from beneficial for the gelatinous species (food, parasite removal), to negative (predation on them). We review existing information and present new data on these topics. Although such interactions have been documented frequently, the significance to either fish or pelagic coelenterate populations is poorly understood. The effects of pelagic coelenterates on fish populations are of particular interest because of the great importance of fisheries to the global economy. As fishing pressures mount, it becomes increasingly important to understand how they may influence the balance between pelagic coelenterates and fish.


Journal of the Marine Biological Association of the United Kingdom | 2005

Climate effects on formation of jellyfish and ctenophore blooms: a review

Jennifer E. Purcell

Much speculation and some evidence suggest that jellyfish and ctenophore populations have increased in recent decades. Unfortunately, few past records exist with which to compare current populations, and our knowledge of how environmental factors affect jellyfish population size is meagre. Human enterprise has wrought many changes in the ocean that are hypothesized to favour jellyfish, including eutrophication, reduction of fish stocks, and global warming. In addition to anthropogenic changes, natural climate cycles may affect jellyfish populations. Records of jellyfish and ctenophore abundance that appear to be related to indices of climate variations (temperature, salinity, North Atlantic Oscillation, North Pacific Decadal Oscillation, El Nino Southern Oscillation) are reviewed. In eleven species studied from subtropical, temperate and subarctic environments, warm temperatures were related to large population sizes; three scyphozoan species in the North Sea, and one mesopelagic hydromedusan were exceptions to that trend. One tropical scyphomedusan species was decimated by unusually warm, salty El Nino conditions in Palau. Because climate changes have complex ecosystem-level effects, the proximate causes of jellyfish increases are difficult to deduce. Therefore, the effects of temperature, salinity and prey on asexual production of new medusae from the benthic polyps of scyphomedusae and hydromedusae also are reviewed. Experiments on temperate species show greater and more rapid production of medusae at warmer temperatures. Salinity also had significant effects, and was especially important for estuarine species. Temperature and salinity affect asexual reproduction rates directly through metabolism, and indirectly through prey capture. Ocean warming may shift the distributions, expand the seasonal occurrence, and increase the abundances of temperate-boreal species. Populations living near their thermal maximum may suffer negative consequences of warming.


Hydrobiologia | 2001

The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin

Jennifer E. Purcell; Tamara A. Shiganova; Mary Beth Decker; Edward D. Houde

The native habitats of the ctenophore, Mnemiopsis, are temperate to subtropical estuaries along the Atlantic coast of North and South America, where it is found in an extremely wide range of environmental conditions (winter low and summer high temperatures of 2 and 32 °C, respectively, and salinities of <2–38). In the early 1980s, it was accidentally introduced to the Black Sea, where it flourished and expanded into the Azov, Marmara, Mediterranean and Caspian Seas. We compile data showing that Mnemiopsis has high potentials of growth, reproduction and feeding that enable this species to be a predominant zooplanktivore in a wide variety of habitats; review the population distributions and dynamics of Mnemiopsis in U.S. waters and in the Black Sea region; and examine the effects of temperature and salinity, zooplankton availability and predator abundance on Mnemiopsis population size in both regions, and the effects of Mnemiopsis on zooplankton, ichthyoplankton and fish populations, focusing on Chesapeake Bay and the Black Sea. In both regions, Mnemiopsis populations are restricted by low winter temperatures (<2 °C). In native habitats, predators of Mnemiopsis often limit their populations, and zooplanktivorous fish are abundant and may compete with the ctenophores for food. By contrast, in the Black Sea region, no obvious predators of Mnemiopsis were present during the decade following introduction when the ctenophore populations flourished. Additionally, zooplanktivorous fish populations had been severely reduced by over fishing prior to the ctenophore outbreak. Thus, small populations of potential predators and competitors for food enabled Mnemiopsis populations to swell in the new habitats. In Chesapeake Bay, Mnemiopsis consumes substantial proportions of zooplankton daily, but may only noticeably reduce zooplankton populations when predators of Mnemiopsis are uncommon. Mnemiopsis also is an important predator of fish eggs in both locations. In the Black Sea, reductions in zooplankton, ichthyoplankton and zooplanktivorous fish populations have been attributed to Mnemiopsis. We conclude that the enormous impact of Mnemiopsis on the Black Sea ecosystem occurred because of the shortage of predators and competitors in the late 1980s and early 1990s. The appearance of the ctenophore, Beroe ovata, may promote the recovery of the Black Sea ecosystem from the effects of the Mnemiopsis invasion.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Recurrent jellyfish blooms are a consequence of global oscillations

Robert H. Condon; Carlos M. Duarte; Kylie Anne Pitt; Kelly L. Robinson; Cathy H. Lucas; Kelly R. Sutherland; Hermes Mianzan; Molly Bogeberg; Jennifer E. Purcell; Mary Beth Decker; Shin-ichi Uye; Laurence P. Madin; Richard D. Brodeur; Steven H. D. Haddock; Alenka Malej; Gregory D. Parry; Elena Eriksen; Javier Quiñones; Milena Acha; Michel Harvey; James Michael Arthur; William M. Graham

A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face.


BioScience | 2012

Questioning the Rise of Gelatinous Zooplankton in the World's Oceans

Robert H. Condon; William M. Graham; Carlos M. Duarte; Kylie Anne Pitt; Cathy H. Lucas; Steven H. D. Haddock; Kelly R. Sutherland; Kelly L. Robinson; Michael N Dawson; Mary Beth Decker; Claudia E. Mills; Jennifer E. Purcell; Alenka Malej; Hermes Mianzan; Shin-ichi Uye; Stefan Gelcich; Laurence P. Madin

During the past several decades, high numbers of gelatinous Zooplankton species have been reported in many estuarine and coastal ecosystems. Coupled with media-driven public perception, a paradigm has evolved in which the global ocean ecosystems are thought to he heading toward being dominated by “nuisance” jellyfish. We question this current paradigm by presenting a broad overview of gelatinous Zooplankton in a historical context to develop the hypothesis that population changes reflect the human-mediated alteration of global ocean ecosystems. To this end, we synthesize information related to the evolutionary context of contemporary gelatinous Zooplankton blooms, the human frame of reference for changes in gelatinous Zooplankton populations, and whether sufficient data are available to have established the paradigm. We conclude that the current paradigm in which it is believed that there has been a global increase in gelatinous Zooplankton is unsubstantiated, and we develop a strategy for addressing the critical questions about long-term, human-related changes in the sea as they relate to gelatinous Zooplankton blooms.


Frontiers in Ecology and the Environment | 2013

Is global ocean sprawl a cause of jellyfish blooms

Carlos M. Duarte; Kylie Anne Pitt; Cathy H. Lucas; Jennifer E. Purcell; Shin-ich Uye; Kelly L. Robinson; Lucas Brotz; Mary Beth Decker; Kelly R. Sutherland; Alenk Malej; Laurence P. Madin; Hermes Mianzan; Josep Maria Gili; Veronica Fuentes; Dacha Atienza; Francesc Pagés; Jennafer Malek; William M. Graham; Robert H. Condon

Jellyfish (Cnidaria, Scyphozoa) blooms appear to be increasing in both intensity and frequency in many coastal areas worldwide, due to multiple hypothesized anthropogenic stressors. Here, we propose that the proliferation of artificial structures – associated with (1) the exponential growth in shipping, aquaculture, and other coastal industries, and (2) coastal protection (collectively, “ocean sprawl”) – provides habitat for jellyfish polyps and may be an important driver of the global increase in jellyfish blooms. However, the habitat of the benthic polyps that commonly result in coastal jellyfish blooms has remained elusive, limiting our understanding of the drivers of these blooms. Support for the hypothesized role of ocean sprawl in promoting jellyfish blooms is provided by observations and experimental evidence demonstrating that jellyfish larvae settle in large numbers on artificial structures in coastal waters and develop into dense concentrations of jellyfish-producing polyps.


Estuaries | 2003

The Pattern and Influence of Low Dissolved Oxygen in the Patuxent River, a Seasonally Hypoxic Estuary

Aaron T. Adamack; Kenneth A. Rose; Sarah E. Kolesar; Beth Decker; Jennifer E. Purcell; Julie E. Keister; James H. Cowan

Increased nutrient loadings have resulted in low dissolved oxygen (DO) concentrations in bottom waters of the Patuxent River, a tributary of Chesapeake Bay. We synthesize existing and newly collected data to examine spatial and temporal variation in bottom DO, the prevalence of hypoxia-induced mortality of fishes, the tolerance of Patuxent River biota to low DO, and the influence of bottom DO on the vertical distributions and spatial overlap of larval fish and fish eggs with their gelatinous predators and zooplankton prey. We use this information, as well as output from watershed-quality and water-quality models, to configure a spatially-explicit individual-based model to predict how changing land use within the Patuxent watershed may affect survival of early life stages of summer breeding fishes through its effect on DO. Bottom waters in much of the mesohaline Patuxent River are below 50% DO saturation during summer. The system is characterized by high spatial and temporal variation in DO concentrations, and the current severity and extent of hypoxia are sufficient to alter distributions of organisms and trophic interactions in the river. Gelatinous zooplankton are among the most tolerant species of hypoxia, while several of the ecologically and economically important finfish are among the most sensitive. This variation in DO tolerances may make the Patuxent River, and similar estuaries, particularly susceptible to hypoxia-induced alterations in food web dynamics. Model simulations consistently predict high mortality of planktonic bay anchovy eggs (Anchoa mitchilli) under current DO, and increasing survival of fish eggs with increasing DO. Changes in land use that reduce nutrient loadings may either increase or decrease predation mortality of larval fish depending on the baseline DO conditions at any point in space and time. A precautionary approach towards fisheries and ecosystem management would recommend reducing nutrients to levels at which low oxygen effects on estuarine habitat are reduced and, where possible, eliminated.


Marine Biology | 1981

Dietary composition and diel feeding patterns of epipelagic siphonophores

Jennifer E. Purcell

Prey consumption patterns are described for 24 species of epipelagic siphonophores studied during 1977–1980 in the Gulf of California, off Southern California, in the Sargasso Sea, and in Friday Harbor, Washington. Of the species, 7 were studied by day and at night, 15 were studied only by day, and 2 were studied only at night. Each of the 3 suborders of siphonophores had a characteristic diet. Siphonophores in the suborder Cystonectae, which had large gastrozooids, fed primarily on fish larvae. Species in the suborder Physonectae, which generally had few, large gastrozooids, consumed some small copepods, but consumed mainly large copepods and a variety of large, noncopepod prey. Species in the suborder Calycophorae, which generally had many small gastrozooids, fed mainly on small copepods, and also on other small prey organisms. The maximum size of prey tended to be correlated with gastrozooid length for all the siphonophores studied. For a given siphonophore species, the number of ingested prey was greatest at localities where prey organisms were most abundant in the surrounding seawater. For siphonophore species collected both day and night, there was a tendency for more prey to be consumed at night. Behavioral observations in the laboratory indicated that of 7 siphonophore species tested, 2 fed only in the light, and another fed only in the dark.


Hydrobiologia | 1991

A review of cnidarians and ctenophores feeding on competitors in the plankton

Jennifer E. Purcell

Predation among pelagic cnidarians and ctenophores is reviewed. The diets of semaeostome scyphomedusae and hydromedusae commonly include other gelatinous zooplanktivores. However, few species of siphonophores and ctenophores are known to consume other gelatinous species. Most of these species can be said to exhibit intraguild predation, since they consume species that potentially compete with them for food. In addition, some hydromedusan and ctenophore species may consume other gelatinous zooplanktivores exclusively. Characteristics of cnidarians and ctenophores as predators and as prey of other gelatinous species are discussed.


Journal of Geophysical Research | 2001

Modeling the response of top‐down control exerted by gelatinous carnivores on the Black Sea pelagic food web

Temel Oguz; Hugh W. Ducklow; Jennifer E. Purcell; Paola Malanotte-Rizzoli

Recent changes in structure and functioning of the interior Black Sea ecosystem are studied by a series of simulations using a one-dimensional, vertically resolved, coupled physical-biochemical model. The simulations are intended to provide a better understanding of how the pelagic food web structure responds to increasing grazing pressure by gelatinous carnivores (medusae Aurelia aurita and ctenophore Mnemiopsis leidyi) during the past 2 decades. The model is first shown to represent typical eutrophic ecosystem conditions of the late 1970s and early 1980s. This simulation reproduces reasonably well the observed planktonic food web structure at a particular location of the Black Sea for which a year-long data set is available from 1978. Additional simulations are performed to explore the role of the Mnemiopsis-dominated ecosystem in the late 1980s. They are also validated by extended observations from specific years. The results indicate that the population outbreaks of the gelatinous species, either Aurelia or Mnemiopsis, reduce mesozooplankton grazing and lead to increased phytoplankton blooms as observed throughout the 1980s and 1990s in the Black Sea. The peaks of phytoplankton, mesozooplankton, Noctiluca, and gelatinous predator biomass distributions march sequentially as a result of prey-predator interactions. The late winter diatom bloom and a subsequent increase in mesozooplankton stocks are robust features common to all simulations. The autotrophs and heterotrophs, however, have different responses during the rest of the year, depending on the nature of grazing pressure exerted by the gelatinous predators. In the presence of Mnemiopsis, phytoplankton have additional distinct and pronounced bloom episodes during the spring and summer seasons. These events appear with a 2 month time shift in the ecosystem prior to introduction of Mnemiopsis.

Collaboration


Dive into the Jennifer E. Purcell's collaboration.

Top Co-Authors

Avatar

Veronica Fuentes

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Josep Maria Gili

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Uxue Tilves

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dacha Atienza

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana Sabatés

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Robert H. Condon

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Alejandro Olariaga

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Hermes Mianzan

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge