Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer Eschbacher is active.

Publication


Featured researches published by Jennifer Eschbacher.


Cell | 2013

The somatic genomic landscape of glioblastoma.

Cameron Brennan; Roel G.W. Verhaak; Aaron McKenna; Benito Campos; Houtan Noushmehr; Sofie R. Salama; Siyuan Zheng; Debyani Chakravarty; J. Zachary Sanborn; Samuel H. Berman; Rameen Beroukhim; Brady Bernard; Chang-Jiun Wu; Giannicola Genovese; Ilya Shmulevich; Jill S. Barnholtz-Sloan; Lihua Zou; Rahulsimham Vegesna; Sachet A. Shukla; Giovanni Ciriello; W.K. Yung; Wei Zhang; Carrie Sougnez; Tom Mikkelsen; Kenneth D. Aldape; Darell D. Bigner; Erwin G. Van Meir; Michael D. Prados; Andrew E. Sloan; Keith L. Black

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Acta Neuropathologica | 2009

Unified Staging System for Lewy Body Disorders: Correlation with Nigrostriatal Degeneration, Cognitive Impairment and Motor Dysfunction

Thomas G. Beach; Charles H. Adler; Lih-Fen Lue; Lucia I. Sue; Jyothi Bachalakuri; Jonette Henry-Watson; Jeanne Sasse; Sarah Boyer; Scophil Shirohi; Reed G Brooks; Jennifer Eschbacher; Charles L. White; Haru Akiyama; John N. Caviness; Holly A. Shill; Donald J. Connor; Marwan N. Sabbagh; Douglas G. Walker

The two current major staging systems in use for Lewy body disorders fail to classify up to 50% of subjects. Both systems do not allow for large numbers of subjects who have Lewy-type α-synucleinopathy (LTS) confined to the olfactory bulb or who pass through a limbic-predominant pathway that at least initially bypasses the brainstem. The results of the current study, based on examination of a standard set of ten brain regions from 417 subjects stained immunohistochemically for α-synuclein, suggest a new staging system that, in this study, allows for the classification of all subjects with Lewy body disorders. The autopsied subjects included elderly subjects with Parkinson’s disease, dementia with Lewy bodies, incidental Lewy body disease and Alzheimer’s disease with Lewy bodies, as well as comparison groups without Lewy bodies. All subjects were classifiable into one of the following stages: I. Olfactory Bulb Only; IIa Brainstem Predominant; IIb Limbic Predominant; III Brainstem and Limbic; IV Neocortical. Progression of subjects through these stages was accompanied by a generally stepwise worsening in terms of striatal tyrosine hydroxylase concentration, substantia nigra pigmented neuron loss score, Mini Mental State Examination score and score on the Unified Parkinson’s Disease Rating Scale Part 3. Additionally, there were significant correlations between these measures and LTS density scores. It is suggested that the proposed staging system would improve on its predecessors by allowing classification of a much greater proportion of cases.


American Journal of Neuroradiology | 2009

Relative Cerebral Blood Volume Values to Differentiate High-Grade Glioma Recurrence from Posttreatment Radiation Effect: Direct Correlation between Image-Guided Tissue Histopathology and Localized Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging Measurements

Leland S. Hu; Leslie C. Baxter; Kris A. Smith; Burt G. Feuerstein; John P. Karis; Jennifer Eschbacher; Stephen W. Coons; Peter Nakaji; R.F. Yeh; Josef P. Debbins; Joseph E. Heiserman

BACKGROUND AND PURPOSE: Differentiating tumor growth from posttreatment radiation effect (PTRE) remains a common problem in neuro-oncology practice. To our knowledge, useful threshold relative cerebral blood volume (rCBV) values that accurately distinguish the 2 entities do not exist. Our prospective study uses image-guided neuronavigation during surgical resection of MR imaging lesions to correlate directly specimen histopathology with localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC) measurements and to establish accurate rCBV threshold values, which differentiate PTRE from tumor recurrence. MATERIALS AND METHODS: Preoperative 3T gradient-echo DSC and contrast-enhanced stereotactic T1-weighted images were obtained in patients with high-grade glioma (HGG) previously treated with multimodality therapy. Intraoperative neuronavigation documented the stereotactic location of multiple tissue specimens taken randomly from the periphery of enhancing MR imaging lesions. Coregistration of DSC and stereotactic images enabled calculation of localized rCBV within the previously recorded specimen locations. All tissue specimens were histopathologically categorized as tumor or PTRE and were correlated with corresponding rCBV values. All rCBV values were T1-weighted leakage-corrected with preload contrast-bolus administration and T2/T2*-weighted leakage-corrected with baseline subtraction integration. RESULTS: Forty tissue specimens were collected from 13 subjects. The PTRE group (n = 16) rCBV values ranged from 0.21 to 0.71, tumor (n = 24) values ranged from 0.55 to 4.64, and 8.3% of tumor rCBV values fell within the PTRE group range. A threshold value of 0.71 optimized differentiation of the histopathologic groups with a sensitivity of 91.7% and a specificity of 100%. CONCLUSIONS: rCBV measurements obtained by using DSC and the protocol we have described can differentiate HGG recurrence from PTRE with a high degree of accuracy.


Neuro-oncology | 2012

Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival

Leland S. Hu; Jennifer Eschbacher; Joseph E. Heiserman; Amylou C. Dueck; William R. Shapiro; Seban Liu; John P. Karis; Kris A. Smith; Stephen W. Coons; Peter Nakaji; Robert F. Spetzler; Burt G. Feuerstein; Josef P. Debbins; Leslie C. Baxter

INTRODUCTION: Contrast-enhanced MRI (CE-MRI) represents the current mainstay for monitoring treatment response in glioblastoma multiforme (GBM), based on the premise that enlarging lesions reflect increasing tumor burden, treatment failure, and poor prognosis. Unfortunately, irradiating such tumors can induce changes in CE-MRI that mimic tumor recurrence, so called post treatment radiation effect (PTRE), and in fact, both PTRE and tumor re-growth can occur together. Because PTRE represents treatment success, the relative histologic fraction of tumor growth versus PTRE affects survival. Studies suggest that Perfusion MRI (pMRI)–based measures of relative cerebral blood volume (rCBV) can noninvasively estimate histologic tumor fraction to predict clinical outcome. There are several proposed pMRI-based analytic methods, although none have been correlated with overall survival (OS). This study compares how well histologic tumor fraction and OS correlate with several pMRI-based metrics. METHODS: We recruited previously treated patients with GBM undergoing surgical re-resection for suspected tumor recurrence and calculated preoperative pMRI-based metrics within CE-MRI enhancing lesions: rCBV mean, mode, maximum, width, and a new thresholding metric called pMRI–fractional tumor burden (pMRI-FTB). We correlated all pMRI-based metrics with histologic tumor fraction and OS. RESULTS: Among 25 recurrent patients with GBM, histologic tumor fraction correlated most strongly with pMRI-FTB (r = 0.82; P < .0001), which was the only imaging metric that correlated with OS (P<.02). CONCLUSION: The pMRI-FTB metric reliably estimates histologic tumor fraction (i.e., tumor burden) and correlates with OS in the context of recurrent GBM. This technique may offer a promising biomarker of tumor progression and clinical outcome for future clinical trials.


Gut | 2010

Activation of brain macrophages/microglia cells in hepatitis C infection

Jeffrey Wilkinson; Marek Radkowski; Jennifer Eschbacher; Tomasz Laskus

Objectives Hepatitis C virus (HCV) infection is commonly associated with cognitive dysfunction. Viral sequences and proteins were previously found in brain macrophage/microglia cells. The aim of the current study was to determine whether HCV infection affects the expression of key cytokines and chemokines in these cells. Methods Autopsy brain tissue from 15 patients was studied; 7 patients were HCV positive and 8 were HCV negative. Cryostat sections of frontal cortex and subcortical white matter were stained with monoclonal antibodies specific for microglia/macrophages (anti-CD68) and separated by laser capture microscopy. Transcripts representing 25 various cytokines and chemokines were measured by real-time quantitative PCR. Results Compared with HCV-negative controls, HCV-positive patients demonstrated significantly higher levels of proinflammatory cytokines interleukin 1α (IL-1α), IL-1β, tumour necrosis factor α (TNFα), IL-12 and IL-18. HCV infection was also associated with increased transcription of chemokines IL-8, IL-16 and interferon-inducible protein 10 (IP-10). Type 1 interferon (IFN) activation was suggested by increased concentrations of IFNβ and myxovirus resistance protein A (MxA) transcripts. Similar results were obtained when CD68-positive/HCV-positive cells were compared with CD68-positive/HCV-negative cells in each of the 7 HCV-infected patients. Conclusion Evidence was found for activation of brain macrophages/microglia cells in autopsy brain tissue from HCV-positive patients. These findings could relate to the common presence of neurocognitive dysfunction among patients with chronic hepatitis C.


American Journal of Neuroradiology | 2012

Correlations between Perfusion MR Imaging Cerebral Blood Volume, Microvessel Quantification, and Clinical Outcome Using Stereotactic Analysis in Recurrent High-Grade Glioma

Leland S. Hu; Jennifer Eschbacher; Amylou C. Dueck; Joseph E. Heiserman; Seban Liu; John P. Karis; Kris A. Smith; William R. Shapiro; D. S. Pinnaduwage; Stephen W. Coons; Peter Nakaji; Josef P. Debbins; Burt G. Feuerstein; Leslie C. Baxter

BACKGROUND AND PURPOSE: Quantifying MVA rather than MVD provides better correlation with survival in HGG. This is attributed to a specific “glomeruloid” vascular pattern, which is better characterized by vessel area than number. Despite its prognostic value, MVA quantification is laborious and clinically impractical. The DSC-MR imaging measure of rCBV offers the advantages of speed and convenience to overcome these limitations; however, clinical use of this technique depends on establishing accurate correlations between rCBV, MVA, and MVD, particularly in the setting of heterogeneous vascular size inherent to human HGG. MATERIALS AND METHODS: We obtained preoperative 3T DSC-MR imaging in patients with HGG before stereotactic surgery. We histologically quantified MVA, MVD, and vascular size heterogeneity from CD34-stained 10-μm sections of stereotactic biopsies, and we coregistered biopsy locations with localized rCBV measurements. We statistically correlated rCBV, MVA, and MVD under conditions of high and low vascular-size heterogeneity and among tumor grades. We correlated all parameters with OS by using Cox regression. RESULTS: We analyzed 38 biopsies from 24 subjects. rCBV correlated strongly with MVA (r = 0.83, P < .0001) but weakly with MVD (r = 0.32, P = .05), due to microvessel size heterogeneity. Among samples with more homogeneous vessel size, rCBV correlation with MVD improved (r = 0.56, P = .01). OS correlated with both rCBV (P = .02) and MVA (P = .01) but not with MVD (P = .17). CONCLUSIONS: rCBV provides a reliable estimation of tumor MVA as a biomarker of glioma outcome. rCBV poorly estimates MVD in the presence of vessel size heterogeneity inherent to human HGG.


Neurosurgery | 2011

Intraoperative Confocal Microscopy for Brain Tumors: A Feasibility Analysis in Humans

Nader Sanai; Jennifer Eschbacher; Guido Hattendorf; Stephen W. Coons; Mark C. Preul; Kris A. Smith; Peter Nakaji; Robert F. Spetzler

BACKGROUND: The ability to diagnose brain tumors intraoperatively and identify tumor margins during resection could maximize resection and minimize morbidity. Advances in optical imaging enabled production of a handheld intraoperative confocal microscope. OBJECTIVE: To present a feasibility analysis of the intraoperative confocal microscope for brain tumor resection. METHODS: Thirty-three patients with brain tumor treated at Barrow Neurological Institute were examined. All patients received an intravenous bolus of sodium fluorescein before confocal imaging with the Optiscan FIVE 1 system probe. Optical biopsies were obtained within each tumor and along the tumor-brain interfaces. Corresponding pathologic specimens were then excised and processed. These data was compared by a neuropathologist to identify the concordance for tumor histology, grade, and margins. RESULTS: Thirty-one of 33 lesions were tumors (93.9%) and 2 cases were identified as radiation necrosis (6.1%). Of the former, 25 (80.6%) were intra-axial and 6 (19.4%) were extra-axial. Intra-axial tumors were most commonly gliomas and metastases, while all extra-axial tumors were meningiomas. Among high-grade gliomas, vascular neoproliferation, as well as tumor margins, were identifiable using confocal imaging. Meningothelial and fibrous meningiomas were distinct on confocal microcopy-the latter featured spindle-shaped cells distinguishable from adjacent parenchyma. Other tumor histologies correlated well with standard neuropathology tissue preparations. CONCLUSION: Intraoperative confocal microscopy is a practicable technology for the resection of human brain tumors. Preliminary analysis demonstrates reliability for a variety of lesions in identifying tumor cells and the tumor-brain interface. Further refinement of this technology depends upon the approval of tumor-specific fluorescent contrast agents for human use.


Journal of Neurosurgery | 2011

Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor

Nikolay L. Martirosyan; Daniel D. Cavalcanti; Jennifer Eschbacher; Peter M. Delaney; Adrienne C. Scheck; Mohammed G. Abdelwahab; Peter Nakaji; Robert F. Spetzler; Mark C. Preul

OBJECT Infiltrative tumor resection is based on regional (macroscopic) imaging identification of tumorous tissue and the attempt to delineate invasive tumor margins in macroscopically normal-appearing tissue, while preserving normal brain tissue. The authors tested miniaturized confocal fiberoptic endomicroscopy by using a near-infrared (NIR) imaging system with indocyanine green (ICG) as an in vivo tool to identify infiltrating glioblastoma cells and tumor margins. METHODS Thirty mice underwent craniectomy and imaging in vivo 14 days after implantation with GL261-luc cells. A 0.4 mg/kg injection of ICG was administered intravenously. The NIR images of normal brain, obvious tumor, and peritumoral zones were collected using the handheld confocal endomicroscope probe. Histological samples were acquired from matching imaged areas for correlation of tissue images. RESULTS In vivo NIR wavelength confocal endomicroscopy with ICG detects fluorescence of tumor cells. The NIR and ICG macroscopic imaging performed using a surgical microscope correlated generally to tumor and peritumor regions, but NIR confocal endomicroscopy performed using ICG revealed individual tumor cells and satellites within peritumoral tissue; a definitive tumor border; and striking fluorescent microvascular, cellular, and subcellular structures (for example, mitoses, nuclei) in various tumor regions correlating with standard clinical histological features and known tissue architecture. CONCLUSIONS Macroscopic fluorescence was effective for gross tumor detection, but NIR confocal endomicroscopy performed using ICG enhanced sensitivity of tumor detection, providing real-time true microscopic histological information precisely related to the site of imaging. This first-time use of such NIR technology to detect cancer suggests that combined macroscopic and microscopic in vivo ICG imaging could allow interactive identification of microscopic tumor cell infiltration into the brain, substantially improving intraoperative decisions.


Journal of Neurosurgery | 2012

In vivo intraoperative confocal microscopy for real-time histopathological imaging of brain tumors.

Jennifer Eschbacher; Nikolay L. Martirosyan; Peter Nakaji; Nader Sanai; Mark C. Preul; Kris A. Smith; Stephen W. Coons; Robert F. Spetzler

OBJECT Frozen-section analysis is the current standard for the intraoperative diagnosis of brain tumors. Intraoperative confocal microscopy is an emerging technology with the potential to visualize tumor histopathological features and cell morphology in real time. The authors report their findings using this new intraoperative technology in vivo with sodium fluorescein contrast during the course of 50 microsurgical tumor resections. METHODS Eighty-eight regions were visualized with confocal microscopy, and corresponding biopsy samples were examined with routine neuropathological analysis. The tumors studied included meningiomas, schwannomas, gliomas of various grades, and a hemangioblastoma. The confocal microscopic features of each tumor and of various artifacts inherent to the technology were documented. A pathologist working in a blinded fashion reviewed a subset of the images in a further evaluation of the usefulness of the device as a diagnostic tool. RESULTS Overall, intraoperative confocal imaging correlated surprisingly well with corresponding traditional histological findings, including the identification of many pathognomonic cytoarchitectural features of various brain tumors. In the blinded study, 26 (92.9%) of 28 lesions were diagnosed correctly. CONCLUSIONS Further study will be necessary for better definition of the role of intraoperative confocal microscopy as a routine adjunct for intraoperative brain tumor diagnosis.


Neurosurgery | 2010

Miniaturized handheld confocal microscopy for neurosurgery: results in an experimental glioblastoma model.

Tejas Sankar; Peter M. Delaney; Robert W. Ryan; Jennifer Eschbacher; Mohammed G. Abdelwahab; Peter Nakaji; Stephen W. Coons; Adrienne C. Scheck; Kris A. Smith; Robert F. Spetzler; Mark C. Preul

INTRODUCTIONRecent developments in optical science and image processing have miniaturized the components required for confocal microscopy. Clinical confocal imaging applications have emerged, including assessment of colonic mucosal dysplasia during colonoscopy. We present our initial experience with handheld, miniaturized confocal imaging in a murine brain tumor model. METHODSTwelve C57/BL6 mice were implanted intracranially with 105 GL261 glioblastoma cells. The brains of 6 anesthetized mice each at 14 and 21 days after implantation were exposed surgically, and the brain surface was imaged using a handheld confocal probe affixed to a stereotactic frame. The probe was moved systematically over regions of normal and tumor-containing tissue. Intravenous fluorescein and topical acriflavine contrast agents were used. Biopsies were obtained at each imaging site beneath the probe and assessed histologically. Mice were killed after imaging. RESULTSHandheld confocal imaging produced exquisite images, well-correlated with corresponding histologic sections, of cellular shape and tissue architecture in murine brain infiltrated by glial neoplasm. Reproducible patterns of cortical vasculature, as well as normal gray and white matter, were identified. Imaging effectively distinguished between tumor and nontumor tissue, including infiltrative tumor margins. Margins were easily identified by observers without prior neuropathology training after minimum experience with the technology. CONCLUSIONMiniaturized handheld confocal imaging may assist neurosurgeons in detecting infiltrative brain tumor margins during surgery. It may help to avoid sampling error during biopsy of heterogeneous glial neoplasms, with the potential to supplement conventional intraoperative frozen section pathology. Clinical trials are warranted on the basis of these promising initial results.

Collaboration


Dive into the Jennifer Eschbacher's collaboration.

Top Co-Authors

Avatar

Peter Nakaji

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Mark C. Preul

St. Joseph's Hospital and Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stephen W. Coons

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Robert F. Spetzler

St. Joseph's Hospital and Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kris A. Smith

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Nikolay L. Martirosyan

St. Joseph's Hospital and Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adrienne C. Scheck

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie C. Baxter

St. Joseph's Hospital and Medical Center

View shared research outputs
Top Co-Authors

Avatar

Evgenii Belykh

St. Joseph's Hospital and Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge