Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer F. Potter is active.

Publication


Featured researches published by Jennifer F. Potter.


Medicine and Science in Sports and Exercise | 2015

Immersion Pulmonary Edema and Comorbidities: Case Series and Updated Review

Dionne F. Peacher; Stefanie D. Martina; Claire E. Otteni; Tracy E. Wester; Jennifer F. Potter; Richard E. Moon

PURPOSE Immersion pulmonary edema (IPE) occurs in swimmers (especially triathletes) and scuba divers. Its pathophysiology and risk factors are incompletely understood. This study was designed to establish the prevalence of preexisting comorbidities in individuals who experience IPE. METHODS From 2008 to May 2010, individuals who had experienced IPE were identified via recruitment for a physiological study. Past medical history and subject characteristics were compared with those available in the current body of literature. RESULTS At Duke University Medical Center, Durham, NC, 36 subjects were identified (mean age = 50.11 ± 10.8 yr), of whom 72.2% had one or more significant medical conditions at the time of IPE incident (e.g., hypertension, cardiac dysrhythmias or structural abnormality or dysfunction, asthma, diabetes mellitus, overweight or obesity, obstructive sleep apnea, hypothyroidism). Forty-five articles were included, containing 292 cases of IPE, of which 24.0% had identifiable cardiopulmonary risk factors. Within the recreational population, cases with identifiable risk factors comprised 44.9%. Mean age was 47.8 ± 11.3 yr in recreational divers/swimmers and 23.3 ± 6.4 yr in military divers/swimmers. CONCLUSIONS Cardiopulmonary disease may be a common predisposing factor in IPE in the recreational swimming/diving population, whereas pulmonary hypertension due to extreme exertion may be more important in military cases. Individuals with past history of IPE in our case series had a greater proportion of comorbidities compared to published cases. The role of underlying cardiopulmonary dysfunction may be underestimated, especially in older swimmers and divers. We conclude that an episode of IPE should prompt the evaluation of cardiac and pulmonary function.


Circulation | 2016

Swimming-Induced Pulmonary Edema: Pathophysiology and Risk Reduction With Sildenafil

Richard E. Moon; Stefanie D. Martina; Dionne F. Peacher; Jennifer F. Potter; Tracy E. Wester; Anne D. Cherry; Michael J. Natoli; Claire E. Otteni; Dawn N. Kernagis; William D. White; John J. Freiberger

Background— Swimming-induced pulmonary edema (SIPE) occurs during swimming or scuba diving, often in young individuals with no predisposing conditions, and its pathophysiology is poorly understood. This study tested the hypothesis that pulmonary artery and pulmonary artery wedge pressures are higher in SIPE-susceptible individuals during submerged exercise than in the general population and are reduced by sildenafil. Methods and Results— Ten study subjects with a history of SIPE (mean age, 41.6 years) and 20 control subjects (mean age, 36.2 years) were instrumented with radial artery and pulmonary artery catheters and performed moderate cycle ergometer exercise for 6 to 7 minutes while submersed in 20°C water. SIPE-susceptible subjects repeated the exercise 150 minutes after oral administration of 50 mg sildenafil. Work rate and mean arterial pressure during exercise were similar in controls and SIPE-susceptible subjects. Average ![Graphic][1] o2 and cardiac output in controls and SIPE-susceptible subjects were: ![Graphic][2] o2 2.42 L·min–1 versus 1.95 L·min–1, P =0.2; and cardiac output 17.9 L·min–1 versus 13.8 L·min–1, P =0.01. Accounting for differences in cardiac output between groups, mean pulmonary artery pressure at cardiac output=13.8 L·min–1 was 22.5 mm Hg in controls versus 34.0 mm Hg in SIPE-susceptible subjects ( P =0.004), and the corresponding pulmonary artery wedge pressure was 11.0 mm Hg versus 18.8 mm Hg ( P =0.028). After sildenafil, there were no statistically significant differences in mean pulmonary artery pressure or pulmonary artery wedge pressure between SIPE-susceptible subjects and controls. Conclusions— These observations confirm that SIPE is a form of hemodynamic pulmonary edema. The reduction in pulmonary vascular pressures after sildenafil with no adverse effect on exercise hemodynamics suggests that it may be useful in SIPE prevention. Clinical Trial Registration— URL: . Unique identifier: [NCT00815646][3]. # CLINICAL PERSPECTIVES {#article-title-52} [1]: /embed/inline-graphic-1.gif [2]: /embed/inline-graphic-2.gif [3]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT00815646&atom=%2Fcirculationaha%2F133%2F10%2F988.atomBackground— Swimming-induced pulmonary edema (SIPE) occurs during swimming or scuba diving, often in young individuals with no predisposing conditions, and its pathophysiology is poorly understood. This study tested the hypothesis that pulmonary artery and pulmonary artery wedge pressures are higher in SIPE-susceptible individuals during submerged exercise than in the general population and are reduced by sildenafil. Methods and Results— Ten study subjects with a history of SIPE (mean age, 41.6 years) and 20 control subjects (mean age, 36.2 years) were instrumented with radial artery and pulmonary artery catheters and performed moderate cycle ergometer exercise for 6 to 7 minutes while submersed in 20°C water. SIPE-susceptible subjects repeated the exercise 150 minutes after oral administration of 50 mg sildenafil. Work rate and mean arterial pressure during exercise were similar in controls and SIPE-susceptible subjects. Average O2 and cardiac output in controls and SIPE-susceptible subjects were: O2 2.42 L·min–1 versus 1.95 L·min–1, P=0.2; and cardiac output 17.9 L·min–1 versus 13.8 L·min–1, P=0.01. Accounting for differences in cardiac output between groups, mean pulmonary artery pressure at cardiac output=13.8 L·min–1 was 22.5 mm Hg in controls versus 34.0 mm Hg in SIPE-susceptible subjects (P=0.004), and the corresponding pulmonary artery wedge pressure was 11.0 mm Hg versus 18.8 mm Hg (P=0.028). After sildenafil, there were no statistically significant differences in mean pulmonary artery pressure or pulmonary artery wedge pressure between SIPE-susceptible subjects and controls. Conclusions— These observations confirm that SIPE is a form of hemodynamic pulmonary edema. The reduction in pulmonary vascular pressures after sildenafil with no adverse effect on exercise hemodynamics suggests that it may be useful in SIPE prevention. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT00815646.


Journal of Applied Physiology | 2015

Commentaries on Viewpoint: Why do some patients stop breathing after taking narcotics? Ventilatory chemosensitivity as a predictor of opioid-induced respiratory depression

Jennifer F. Potter; Richard E. Moon

opioid-induced respiratory depression (OIRD) is a serious public health and patient safety concern. In 2010, drug overdose was the leading cause of injury death in the United States ([32][1]), with 75% of these deaths involving opioid analgesics ([2][2], [10][3]). The problem is not limited to


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

Shelly R. H. Pecorella; Jennifer F. Potter; Anne D. Cherry; Dionne F. Peacher; Karen E. Welty-Wolf; Richard E. Moon; Claude A. Piantadosi; Hagir B. Suliman

The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity.


Medicine and Science in Sports and Exercise | 2017

Sildenafil: Possible Prophylaxis against Swimming-induced Pulmonary Edema.

Stefanie D. Martina; John J. Freiberger; Dionne F. Peacher; Michael J. Natoli; Eric A. Schinazi; Dawn N. Kernagis; Jennifer F. Potter; Claire E. Otteni; Richard E. Moon

Swimming-induced pulmonary edema (SIPE) occurs during swimming and scuba diving, usually in cold water, in susceptible healthy individuals, especially military recruits and triathletes. We have previously demonstrated that pulmonary artery (PA) pressure and PA wedge pressure are higher during immersed exercise in SIPE-susceptible individuals versus controls, confirming that SIPE is a form of hemodynamic pulmonary edema. Oral sildenafil 50 mg 1 h before immersed exercise reduced PA pressure and PA wedge pressure, suggesting that sildenafil may prevent SIPE. We present a case of a 46-yr-old female ultratriathlete with a history of at least five SIPE episodes. During a study of an exercise submerged in 20°C water, physiological parameters before and after sildenafil 50 mg orally were as follows: O2 consumption 1.75, 1.76 L·min; HR 129, 135 bpm; arterial pressure 189/88 (mean 121.5), 172/85 (mean 114.3) mm Hg; mean PA pressure 35.3, 28.8 mm Hg; and PA wedge pressure 25.3, 19.7 mm Hg. She has had no recurrences during 20 subsequent triathlons while taking 50 mg sildenafil before each swim. This case supports sildenafil as an effective prophylactic agent against SIPE during competitive surface swimming.


Journal of Applied Physiology | 2015

Last Word on Viewpoint: Why do some patients stop breathing after taking narcotics? Ventilatory chemosensitivity as a predictor of opioid-induced respiratory depression

Jennifer F. Potter; Richard E. Moon

to the editor: We are pleased at the interest in this important issue ([4][1]) and appreciate the insightful comments. Drs. Luehrs and Bates (see Ref. [7][2]) have made two excellent points. Although increasing numbers of opioid-related deaths in the community may be partly due to recreational use


Undersea & Hyperbaric Medicine | 2017

Hypercapnia in diving: a review of CO2 retention in submersed exercise at depth

Sophia Dunworth; Michael J. Natoli; Mary Cooter; Anne D. Cherry; Dionne F. Peacher; Jennifer F. Potter; Tracy E. Wester; John J. Freiberger; Richard E. Moon

Carbon dioxide (CO₂) retention, or hypercapnia, is a known risk of diving that can cause mental and physical impairments leading to life-threatening accidents. Often, such accidents occur due to elevated inspired carbon dioxide. For instance, in cases of CO₂ elimination system failures during rebreather dives, elevated inspired partial pressure of carbon dioxide (PCO₂) can rapidly lead to dangerous levels of hypercapnia. Elevations in PaCO₂ (arterial pressure of PCO₂) can also occur in divers without a change in inspired PCO₂. In such cases, hypercapnia occurs due to alveolar hypoventilation. Several factors of the dive environment contribute to this effect through changes in minute ventilation and dead space. Predominantly, minute ventilation is reduced in diving due to changes in respiratory load and associated changes in respiratory control. Minute ventilation is further reduced by hyperoxic attenuation of chemosensitivity. Physiologic dead space is also increased due to elevated breathing gas density and to hyperoxia. The Haldane effect, a reduction in CO₂ solubility in blood due to hyperoxia, may contribute indirectly to hypercapnia through an increase in mixed venous PCO₂. In some individuals, low ventilatory response to hypercapnia may also contribute to carbon dioxide retention. This review outlines what is currently known about hypercapnia in diving, including its measurement, cause, mental and physical effects, and areas for future study.


Circulation | 2016

Swimming-Induced Pulmonary EdemaCLINICAL PERSPECTIVES: Pathophysiology and Risk Reduction With Sildenafil

Richard E. Moon; Stefanie D. Martina; Dionne F. Peacher; Jennifer F. Potter; Tracy E. Wester; Anne D. Cherry; Michael J. Natoli; Claire E. Otteni; Dawn N. Kernagis; William D. White; John J. Freiberger

Background— Swimming-induced pulmonary edema (SIPE) occurs during swimming or scuba diving, often in young individuals with no predisposing conditions, and its pathophysiology is poorly understood. This study tested the hypothesis that pulmonary artery and pulmonary artery wedge pressures are higher in SIPE-susceptible individuals during submerged exercise than in the general population and are reduced by sildenafil. Methods and Results— Ten study subjects with a history of SIPE (mean age, 41.6 years) and 20 control subjects (mean age, 36.2 years) were instrumented with radial artery and pulmonary artery catheters and performed moderate cycle ergometer exercise for 6 to 7 minutes while submersed in 20°C water. SIPE-susceptible subjects repeated the exercise 150 minutes after oral administration of 50 mg sildenafil. Work rate and mean arterial pressure during exercise were similar in controls and SIPE-susceptible subjects. Average ![Graphic][1] o2 and cardiac output in controls and SIPE-susceptible subjects were: ![Graphic][2] o2 2.42 L·min–1 versus 1.95 L·min–1, P =0.2; and cardiac output 17.9 L·min–1 versus 13.8 L·min–1, P =0.01. Accounting for differences in cardiac output between groups, mean pulmonary artery pressure at cardiac output=13.8 L·min–1 was 22.5 mm Hg in controls versus 34.0 mm Hg in SIPE-susceptible subjects ( P =0.004), and the corresponding pulmonary artery wedge pressure was 11.0 mm Hg versus 18.8 mm Hg ( P =0.028). After sildenafil, there were no statistically significant differences in mean pulmonary artery pressure or pulmonary artery wedge pressure between SIPE-susceptible subjects and controls. Conclusions— These observations confirm that SIPE is a form of hemodynamic pulmonary edema. The reduction in pulmonary vascular pressures after sildenafil with no adverse effect on exercise hemodynamics suggests that it may be useful in SIPE prevention. Clinical Trial Registration— URL: . Unique identifier: [NCT00815646][3]. # CLINICAL PERSPECTIVES {#article-title-52} [1]: /embed/inline-graphic-1.gif [2]: /embed/inline-graphic-2.gif [3]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT00815646&atom=%2Fcirculationaha%2F133%2F10%2F988.atomBackground— Swimming-induced pulmonary edema (SIPE) occurs during swimming or scuba diving, often in young individuals with no predisposing conditions, and its pathophysiology is poorly understood. This study tested the hypothesis that pulmonary artery and pulmonary artery wedge pressures are higher in SIPE-susceptible individuals during submerged exercise than in the general population and are reduced by sildenafil. Methods and Results— Ten study subjects with a history of SIPE (mean age, 41.6 years) and 20 control subjects (mean age, 36.2 years) were instrumented with radial artery and pulmonary artery catheters and performed moderate cycle ergometer exercise for 6 to 7 minutes while submersed in 20°C water. SIPE-susceptible subjects repeated the exercise 150 minutes after oral administration of 50 mg sildenafil. Work rate and mean arterial pressure during exercise were similar in controls and SIPE-susceptible subjects. Average O2 and cardiac output in controls and SIPE-susceptible subjects were: O2 2.42 L·min–1 versus 1.95 L·min–1, P=0.2; and cardiac output 17.9 L·min–1 versus 13.8 L·min–1, P=0.01. Accounting for differences in cardiac output between groups, mean pulmonary artery pressure at cardiac output=13.8 L·min–1 was 22.5 mm Hg in controls versus 34.0 mm Hg in SIPE-susceptible subjects (P=0.004), and the corresponding pulmonary artery wedge pressure was 11.0 mm Hg versus 18.8 mm Hg (P=0.028). After sildenafil, there were no statistically significant differences in mean pulmonary artery pressure or pulmonary artery wedge pressure between SIPE-susceptible subjects and controls. Conclusions— These observations confirm that SIPE is a form of hemodynamic pulmonary edema. The reduction in pulmonary vascular pressures after sildenafil with no adverse effect on exercise hemodynamics suggests that it may be useful in SIPE prevention. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT00815646.


Circulation | 2016

Swimming-Induced Pulmonary EdemaCLINICAL PERSPECTIVES

Richard E. Moon; Stefanie D. Martina; Dionne F. Peacher; Jennifer F. Potter; Tracy E. Wester; Anne D. Cherry; Michael J. Natoli; Claire E. Otteni; Dawn N. Kernagis; William D. White; John J. Freiberger

Background— Swimming-induced pulmonary edema (SIPE) occurs during swimming or scuba diving, often in young individuals with no predisposing conditions, and its pathophysiology is poorly understood. This study tested the hypothesis that pulmonary artery and pulmonary artery wedge pressures are higher in SIPE-susceptible individuals during submerged exercise than in the general population and are reduced by sildenafil. Methods and Results— Ten study subjects with a history of SIPE (mean age, 41.6 years) and 20 control subjects (mean age, 36.2 years) were instrumented with radial artery and pulmonary artery catheters and performed moderate cycle ergometer exercise for 6 to 7 minutes while submersed in 20°C water. SIPE-susceptible subjects repeated the exercise 150 minutes after oral administration of 50 mg sildenafil. Work rate and mean arterial pressure during exercise were similar in controls and SIPE-susceptible subjects. Average ![Graphic][1] o2 and cardiac output in controls and SIPE-susceptible subjects were: ![Graphic][2] o2 2.42 L·min–1 versus 1.95 L·min–1, P =0.2; and cardiac output 17.9 L·min–1 versus 13.8 L·min–1, P =0.01. Accounting for differences in cardiac output between groups, mean pulmonary artery pressure at cardiac output=13.8 L·min–1 was 22.5 mm Hg in controls versus 34.0 mm Hg in SIPE-susceptible subjects ( P =0.004), and the corresponding pulmonary artery wedge pressure was 11.0 mm Hg versus 18.8 mm Hg ( P =0.028). After sildenafil, there were no statistically significant differences in mean pulmonary artery pressure or pulmonary artery wedge pressure between SIPE-susceptible subjects and controls. Conclusions— These observations confirm that SIPE is a form of hemodynamic pulmonary edema. The reduction in pulmonary vascular pressures after sildenafil with no adverse effect on exercise hemodynamics suggests that it may be useful in SIPE prevention. Clinical Trial Registration— URL: . Unique identifier: [NCT00815646][3]. # CLINICAL PERSPECTIVES {#article-title-52} [1]: /embed/inline-graphic-1.gif [2]: /embed/inline-graphic-2.gif [3]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT00815646&atom=%2Fcirculationaha%2F133%2F10%2F988.atomBackground— Swimming-induced pulmonary edema (SIPE) occurs during swimming or scuba diving, often in young individuals with no predisposing conditions, and its pathophysiology is poorly understood. This study tested the hypothesis that pulmonary artery and pulmonary artery wedge pressures are higher in SIPE-susceptible individuals during submerged exercise than in the general population and are reduced by sildenafil. Methods and Results— Ten study subjects with a history of SIPE (mean age, 41.6 years) and 20 control subjects (mean age, 36.2 years) were instrumented with radial artery and pulmonary artery catheters and performed moderate cycle ergometer exercise for 6 to 7 minutes while submersed in 20°C water. SIPE-susceptible subjects repeated the exercise 150 minutes after oral administration of 50 mg sildenafil. Work rate and mean arterial pressure during exercise were similar in controls and SIPE-susceptible subjects. Average O2 and cardiac output in controls and SIPE-susceptible subjects were: O2 2.42 L·min–1 versus 1.95 L·min–1, P=0.2; and cardiac output 17.9 L·min–1 versus 13.8 L·min–1, P=0.01. Accounting for differences in cardiac output between groups, mean pulmonary artery pressure at cardiac output=13.8 L·min–1 was 22.5 mm Hg in controls versus 34.0 mm Hg in SIPE-susceptible subjects (P=0.004), and the corresponding pulmonary artery wedge pressure was 11.0 mm Hg versus 18.8 mm Hg (P=0.028). After sildenafil, there were no statistically significant differences in mean pulmonary artery pressure or pulmonary artery wedge pressure between SIPE-susceptible subjects and controls. Conclusions— These observations confirm that SIPE is a form of hemodynamic pulmonary edema. The reduction in pulmonary vascular pressures after sildenafil with no adverse effect on exercise hemodynamics suggests that it may be useful in SIPE prevention. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT00815646.


Circulation | 2016

Swimming-Induced Pulmonary Edema

Richard E. Moon; Stefanie D. Martina; Dionne F. Peacher; Jennifer F. Potter; Tracy E. Wester; Anne D. Cherry; Michael J. Natoli; Claire E. Otteni; Dawn N. Kernagis; William D. White; John J. Freiberger

Collaboration


Dive into the Jennifer F. Potter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dionne F. Peacher

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tracy E. Wester

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge