Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer F. Raven is active.

Publication


Featured researches published by Jennifer F. Raven.


Cell Cycle | 2008

PERK and PKR: old kinases learn new tricks.

Jennifer F. Raven; Antonis E. Koromilas

Regulating gene expression is an effective way for cells to deal with various stresses. The outcome of this regulation differs with the type of stress, and can promote either cell survival or cell death depending on the severity of the injury incurred. Gene expression can be controlled at several steps, including transcription, translation and degradation. An extensively studied protein involved in translational control is the eukaryotic translation initiation factor 2 (eIF2). When eIF2 becomes phosphorylated on a specific serine residue located within the alpha (α) subunit, global protein synthesis is halted. This phosphorylation occurs following periods of environmental stress, and plays a significant role in the cellular response to these events. The eIF2α kinase family consists of four members, which are each activated in response to different stimuli. Our group has recently discovered that two members of this family, the protein kinase activated by double-stranded RNA (PKR) and the PKR-like endoplasmic reticulum (ER) kinase (PERK) can also regulate the expression of specific proteins by promoting their degradation by the 26S proteasome. Specifically, we demonstrated that degradation of the cell cycle regulator cyclin D1, and the tumour suppressor p53 was promoted by PERK and PKR during periods of ER stress. This novel function may allow the eIF2α kinases to affect a larger number of cellular processes than previously believed.


Journal of Biological Chemistry | 2008

PKR and PKR-like Endoplasmic Reticulum Kinase Induce the Proteasome-dependent Degradation of Cyclin D1 via a Mechanism Requiring Eukaryotic Initiation Factor 2α Phosphorylation

Jennifer F. Raven; Dionissios Baltzis; Shuo Wang; Zineb Mounir; Andreas I. Papadakis; Hong Qing Gao; Antonis E. Koromilas

Cyclin D1 plays a critical role in controlling the G1/S transition via the regulation of cyclin-dependent kinase activity. Several studies have indicated that cyclin D1 translation is decreased upon activation of the eukaryotic initiation factor 2α (eIF2α) kinases. We examined the effect of activation of the eIF2α kinases PKR and PKR-like endoplasmic reticulum kinase (PERK) on cyclin D1 protein levels and translation and determined that cyclin D1 protein levels decrease upon the induction of PKR and PERK catalytic activity but that this decrease is not due to translation. Inhibition of the 26 S proteasome with MG132 rescued cyclin D1 protein levels, indicating that rather than inhibiting translation, PKR and PERK act to increase cyclin D1 degradation. Interestingly, this effect still requires eIF2α phosphorylation at serine 51, as cyclin D1 remains unaffected in cells containing a non-phosphorylatable form of the protein. This proteasome-dependent degradation of cyclin D1 requires an intact ubiquitination pathway, although the ubiquitination of cyclin D1 is not itself affected. Furthermore, this degradation is independent of phosphorylation of cyclin D1 at threonine 286, which is mediated by the glycogen synthase kinase 3β and mitogen-activated protein kinase pathways as described in previous studies. Our study reveals a novel functional cross-talk between eIF2α phosphorylation and the proteasomal degradation of cyclin D1 and that this degradation is dependent upon eIF2α phosphorylation during short, but not prolonged, periods of stress.


Journal of Biological Chemistry | 2007

PKR and PERK induce the proteasome-dependent degradation of cyclin D1 via a mechanism requiring eIF2α phosphorylation

Jennifer F. Raven; Dionissios Baltzis; Shuo Wang; Zineb Mounir; Andreas I. Papadakis; Hong Qing Gao; Antonis E. Koromilas

Cyclin D1 plays a critical role in controlling the G1/S transition via the regulation of cyclin-dependent kinase activity. Several studies have indicated that cyclin D1 translation is decreased upon activation of the eukaryotic initiation factor 2α (eIF2α) kinases. We examined the effect of activation of the eIF2α kinases PKR and PKR-like endoplasmic reticulum kinase (PERK) on cyclin D1 protein levels and translation and determined that cyclin D1 protein levels decrease upon the induction of PKR and PERK catalytic activity but that this decrease is not due to translation. Inhibition of the 26 S proteasome with MG132 rescued cyclin D1 protein levels, indicating that rather than inhibiting translation, PKR and PERK act to increase cyclin D1 degradation. Interestingly, this effect still requires eIF2α phosphorylation at serine 51, as cyclin D1 remains unaffected in cells containing a non-phosphorylatable form of the protein. This proteasome-dependent degradation of cyclin D1 requires an intact ubiquitination pathway, although the ubiquitination of cyclin D1 is not itself affected. Furthermore, this degradation is independent of phosphorylation of cyclin D1 at threonine 286, which is mediated by the glycogen synthase kinase 3β and mitogen-activated protein kinase pathways as described in previous studies. Our study reveals a novel functional cross-talk between eIF2α phosphorylation and the proteasomal degradation of cyclin D1 and that this degradation is dependent upon eIF2α phosphorylation during short, but not prolonged, periods of stress.


Cell Cycle | 2011

Stat1 is a suppressor of ErbB2/Neu-mediated cellular transformation and mouse mammary gland tumor formation

Jennifer F. Raven; Virginie Williams; Shuo Wang; Michel L. Tremblay; William J. Muller; Joan E. Durbin; Antonis E. Koromilas

The anti-tumor function of Stat1 as a regulator of innate immunity and tumor immune surveillance has been long studied and is well understood; however, less clear is its tumor-site specific role. Although Stat1 phosphorylated at tyrosine (Y) 701 and serine (S) 727 is essential for interferon (IFN) signalling, its function in signalling induced in breast cancer cells is not understood. Herein, we show that Stat1 Y701 phosphorylation is increased in human breast tumor cells with elevated levels of ErbB2/HER-2 and in cells transfected with ErbB2/Neu. However, pharmacological inhibition of ErbB2/HER-2 results in the inhibition of Stat1 Y701 phosphorylation indicating an atypical role of phosphorylated Stat1 in the inhibition of ErbB2/HER-2 signalling. Consistent with this notion, we found that Stat1 suppresses tumor development by an activated form of ErbB2/Neu in mouse embryonic fibroblasts in xenograft tumor assays; however, this anti-tumor function of Stat1 does not rely on Y701 and S727 phosphorylation. Experiments with transgenic mice demonstrated that Stat1 acts to suppress Neu-mediated breast tumorigenesis through immune regulatory and tumor-site specific mechanisms. Our data reveal a previous uncharacterized anti-tumor activity of Stat1 in ErbB2/Neu-mediated cell transformation and breast oncogenesis with possible implications in the diagnosis and treatment of ErbB2-positive breast cancers.


Journal of Biological Chemistry | 2006

The Catalytic Activity of the Eukaryotic Initiation Factor-2α Kinase PKR Is Required to Negatively Regulate Stat1 and Stat3 via Activation of the T-cell Protein-tyrosine Phosphatase

Shuo Wang; Jennifer F. Raven; Dionissios Baltzis; Shirin Kazemi; Daniel V. Brunet; Maria Hatzoglou; Michel L. Tremblay; Antonis E. Koromilas

Tyrosine phosphorylation of the transcription factors Stat1 and Stat3 is required for them to dimerize, translocate to the nucleus, and induce gene transcription. Nuclear Stat1 and Stat3 are dephosphorylated and deactivated by the T-cell protein-tyrosine phosphatase (TC-PTP), which facilitates the return of both proteins to the cytoplasm. The protein kinase PKR plays an important role in translational control through the modulation of eukaryotic initiation factor-2α phosphorylation. Previous data have implicated PKR in cell signaling via regulation of Stat1 and Stat3, but the molecular mechanisms underlying these events have remained elusive. Using PKR-/- mouse embryonic fibroblasts and a conditionally active form of human PKR, we demonstrate herein that tyrosine (but not serine) phosphorylation of either Stat1 or Stat3 is impaired in cells with activated kinase. This reduction in Stat1 and Stat3 tyrosine phosphorylation by active PKR proceeds through TC-PTP, which is a substrate of the eukaryotic initiation factor-2α kinase both in vitro and in vivo. TC-PTP phosphorylation alone is insufficient to increase its in vivo phosphatase activity unless accompanied by the inhibition of protein synthesis as a result of PKR activation. These data reveal a novel function of PKR as a negative regulator of Stat1 and Stat3 with important implications in cell signaling.


Cell Cycle | 2008

The eIF2α kinases inhibit vesicular stomatitis virus replication independently of eIF2 phosphorylation.

Jothilatha Krishnamoorthy; Zineb Mounir; Jennifer F. Raven; Antonis E. Koromilas

The eIF2alpha kinases have been involved in the inhibition of vesicular virus replication but the contribution of each kinase to this process has not been fully investigated. Using mouse embryonic fibroblasts (MEFs) from knock-out mice we show that PKR and HRI have no effects on VSV replication as opposed to PERK and GCN2, which exhibit strong inhibitory effects. When MEFs containing the serine 51 to alanine mutation of eIF2alpha were used, we found that VSV replication is independent of eIF2alpha phosphorylation. Nevertheless, the kinase domain of the eIF2alpha kinases is both necessary and sufficient to inhibit VSV replication in cultured cells. Induction of PI3K-Akt/PKB pathway by eIF2alpha kinase activation plays no role in the inhibition of VSV replication. Our data provide strong evidence that VSV replication is not affected by eIF2alpha phosphorylation or downstream effector pathways such as the PI3K-Akt/PKB pathway. Thus, the anti-viral properties of eIF2alpha kinases are not always related to their inhibitory effects on host protein synthesis as previously thought and are possibly mediated by phosphorylation of proteins other than eIF2alpha.


PLOS ONE | 2008

Stat1 Phosphorylation Determines Ras Oncogenicity by Regulating p27Kip1

Shuo Wang; Jennifer F. Raven; Joan E. Durbin; Antonis E. Koromilas

Inactivation of p27Kip1 is implicated in tumorigenesis and has both prognostic and treatment-predictive values for many types of human cancer. The transcription factor Stat1 is essential for innate immunity and tumor immunosurveillance through its ability to act downstream of interferons. Herein, we demonstrate that Stat1 functions as a suppressor of Ras transformation independently of an interferon response. Inhibition of Ras transformation and tumorigenesis requires the phosphorylation of Stat1 at tyrosine 701 but is independent of Stat1 phosphorylation at serine 727. Stat1 induces p27Kip1 expression in Ras transformed cells at the transcriptional level through mechanisms that depend on Stat1 phosphorylation at tyrosine 701 and activation of Stat3. The tumor suppressor properties of Stat1 in Ras transformation are reversed by the inactivation of p27Kip1. Our work reveals a novel functional link between Stat1 and p27Kip1, which act in coordination to suppress the oncogenic properties of activated Ras. It also supports the notion that evaluation of Stat1 phosphorylation in human tumors may prove a reliable prognostic factor for patient outcome and a predictor of treatment response to anticancer therapies aimed at activating Stat1 and its downstream effectors.


Molecular Therapy | 2010

A Fusion of GMCSF and IL-21 Initiates Hypersignaling Through the IL-21Rα Chain With Immune Activating and Tumoricidal Effects In Vivo

Patrick Williams; Moutih Rafei; Manaf Bouchentouf; Jennifer F. Raven; Shala Yuan; Jessica Cuerquis; Kathy Forner; Elena Birman; Jacques Galipeau

We hypothesized that fusing granulocyte-macrophage colony-stimulation factor (GMCSF) and interleukin (IL)-21 as a single bifunctional cytokine (hereafter GIFT-21) would lead to synergistic anticancer immune effects because of their respective roles in mediating inflammation. Mechanistic analysis of GIFT-21 found that it leads to IL-21Rα-dependent STAT3 hyperactivation while also contemporaneously behaving as a dominant-negative inhibitor of GMCSF-driven STAT5 activation. GIFT-21s aberrant interactions with its cognate receptors on macrophages resulted in production of 30-fold greater amounts of IL-6, TNF-α, and MCP-1 when compared to controls. Furthermore, GIFT-21 treatment of primary B and T lymphocytes leads to STAT1-dependent apoptosis of IL-21Rα+ lymphocytes. B16 melanoma cells gene-enhanced to produce GIFT-21 were immune rejected by syngeneic C57Bl/6 mice comparable to the effect of IL-21 alone. However, a significant GIFT-21-driven survival advantage was seen when NOD-SCID mice were implanted with GIFT-21-secreting B16 cells, consistent with a meaningful role of macrophages in tumor rejection. Because GIFT-21 leads to apoptosis of IL-21Rα+ lymphocytes, we tested its cytolytic effect on IL-21Rα+ EL-4 lymphoma tumors implanted in C57Bl/6 mice and could demonstrate a significant increase in survival. These data indicate that GIFT-21 is a novel IL-21Rα agonist that co-opts IL-21Rα-dependent signaling in a manner permissive for targeted cancer immunotherapy.We hypothesized that fusing granulocyte-macrophage colony-stimulation factor (GMCSF) and interleukin (IL)-21 as a single bifunctional cytokine (hereafter GIFT-21) would lead to synergistic anticancer immune effects because of their respective roles in mediating inflammation. Mechanistic analysis of GIFT-21 found that it leads to IL-21Ralpha-dependent STAT3 hyperactivation while also contemporaneously behaving as a dominant-negative inhibitor of GMCSF-driven STAT5 activation. GIFT-21s aberrant interactions with its cognate receptors on macrophages resulted in production of 30-fold greater amounts of IL-6, TNF-alpha, and MCP-1 when compared to controls. Furthermore, GIFT-21 treatment of primary B and T lymphocytes leads to STAT1-dependent apoptosis of IL-21Ralpha(+) lymphocytes. B16 melanoma cells gene-enhanced to produce GIFT-21 were immune rejected by syngeneic C57Bl/6 mice comparable to the effect of IL-21 alone. However, a significant GIFT-21-driven survival advantage was seen when NOD-SCID mice were implanted with GIFT-21-secreting B16 cells, consistent with a meaningful role of macrophages in tumor rejection. Because GIFT-21 leads to apoptosis of IL-21Ralpha(+) lymphocytes, we tested its cytolytic effect on IL-21Ralpha(+) EL-4 lymphoma tumors implanted in C57Bl/6 mice and could demonstrate a significant increase in survival. These data indicate that GIFT-21 is a novel IL-21Ralpha agonist that co-opts IL-21Ralpha-dependent signaling in a manner permissive for targeted cancer immunotherapy.


Molecular Cancer Research | 2010

STAT1 Represses Skp2 Gene Transcription to Promote p27Kip1 Stabilization in Ras-Transformed Cells

Shuo Wang; Jennifer F. Raven; Antonis E. Koromilas

The S-phase kinase-associated protein 2 (Skp2) is an F-box protein that serves as a subunit of the Skp1-Cullin-F-box ubiquitin protein ligase complex. Skp2 is overexpressed in many tumors and promotes tumor formation through its ability to induce the degradation of proteins with antiproliferative and tumor-suppressor functions, such as p27Kip1. The signal transducer and activator of transcription 1 (STAT1) is a key regulator of the immune system through its capacity to act downstream of interferons. STAT1 exhibits tumor-suppressor properties by inhibiting oncogenic pathways and promoting tumor immunosurveillance. Previous work established the antitumor function of STAT1 in Ras-transformed cells through the induction of p27Kip1 at the transcriptional level. Herein, we unveil a novel pathway used by STAT1 to upregulate p27Kip1. Specifically, we show that STAT1 impedes Skp2 gene transcription by binding to Skp2 promoter DNA in vitro and in vivo. Decreased Skp2 expression by STAT1 is accompanied by the increased stability of p27Kip1 in Ras-transformed cells. We further show that impaired expression of STAT1 in human colon cancer cells containing an activated form of K-Ras is associated with the upregulation of Skp2 and downregulation of p27Kip1. Our study identifies Skp2 as a new target gene of STAT1 in Ras-transformed cells with profound implications in cell transformation and tumorigenesis. Mol Cancer Res; 8(5); 798–805. ©2010 AACR.


Cell Cycle | 2008

IRES-mediated translational control of AMAP1 expression during differentiation of monocyte U937 cells

Mariko Miyata; Jennifer F. Raven; Dionissios Baltzis; Antonis E. Koromilas; Hisataka Sabe

Global control of mRNA translation plays key roles in cell regulation, including growth, differentiation and apoptosis. Human monocyte-like U937 cells differentiate into macrophage-like cells upon 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment, a process which is known to be accompanied with a large decrease in general protein synthesis. Here, we found that protein levels of AMAP1 (also called ASAP1 or DDEF1), a GTPase-activating protein for Arf GTPases, increase several fold during U937 cell differentiation. This increase was not accompanied with a notable increase in the AMAP1 gene transcript, nor seemed to be due to 5’-Cap-dependent mRNA translational activities in differentiated U937 cells. We identified the 5’-untranslated region (5’-UTR) of AMAP1 mRNA, and found that this 5’-UTR exhibits significant internal ribosome entry site (IRES)-dependent translational activity in differentiated U937 cells, but not in undifferentiated cells. Our results indicate that monocyte differentiation involves enhancement of IRES activity, by which protein levels of AMAP1 are primarily upregulated.

Collaboration


Dive into the Jennifer F. Raven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuo Wang

Jewish General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Hatzoglou

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge