Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer Gass is active.

Publication


Featured researches published by Jennifer Gass.


Nature | 2006

Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17.

Matt Baker; Ian R. Mackenzie; Stuart Pickering-Brown; Jennifer Gass; Rosa Rademakers; Caroline Lindholm; Julie S. Snowden; Jennifer Adamson; A. Dessa Sadovnick; Sara Rollinson; Ashley Cannon; Emily Dwosh; David Neary; Stacey Melquist; Anna Richardson; Dennis W. Dickson; Zdenek Berger; Jason L. Eriksen; Todd Robinson; Cynthia Zehr; Chad A. Dickey; Richard Crook; Eileen McGowan; David Mann; Bradley F. Boeve; Howard Feldman; Mike Hutton

Frontotemporal dementia (FTD) is the second most common cause of dementia in people under the age of 65 years. A large proportion of FTD patients (35–50%) have a family history of dementia, consistent with a strong genetic component to the disease. In 1998, mutations in the gene encoding the microtubule-associated protein tau (MAPT) were shown to cause familial FTD with parkinsonism linked to chromosome 17q21 (FTDP-17). The neuropathology of patients with defined MAPT mutations is characterized by cytoplasmic neurofibrillary inclusions composed of hyperphosphorylated tau. However, in multiple FTD families with significant evidence for linkage to the same region on chromosome 17q21 (D17S1787–D17S806), mutations in MAPT have not been found and the patients consistently lack tau-immunoreactive inclusion pathology. In contrast, these patients have ubiquitin (ub)-immunoreactive neuronal cytoplasmic inclusions and characteristic lentiform ub-immunoreactive neuronal intranuclear inclusions. Here we demonstrate that in these families, FTD is caused by mutations in progranulin (PGRN) that are likely to create null alleles. PGRN is located 1.7 Mb centromeric of MAPT on chromosome 17q21.31 and encodes a 68.5-kDa secreted growth factor involved in the regulation of multiple processes including development, wound repair and inflammation. PGRN has also been strongly linked to tumorigenesis. Moreover, PGRN expression is increased in activated microglia in many neurodegenerative diseases including Creutzfeldt–Jakob disease, motor neuron disease and Alzheimers disease. Our results identify mutations in PGRN as a cause of neurodegenerative disease and indicate the importance of PGRN function for neuronal survival.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity

Yong Jie Zhang; Ya Fei Xu; Casey Cook; Tania F. Gendron; Paul S. Roettges; Christopher D. Link; Wen Lang Lin; Jimei Tong; Monica Castanedes-Casey; Peter E.A. Ash; Jennifer Gass; Vijayaraghavan Rangachari; Emanuele Buratti; Francisco E. Baralle; Todd E. Golde; Dennis W. Dickson; Leonard Petrucelli

Inclusions of TAR DNA-binding protein-43 (TDP-43), a nuclear protein that regulates transcription and RNA splicing, are the defining histopathological feature of frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-Us) and sporadic and familial forms of amyotrophic lateral sclerosis (ALS). In ALS and FTLD-U, aggregated, ubiquitinated, and N-terminally truncated TDP-43 can be isolated from brain tissue rich in neuronal and glial cytoplasmic inclusions. The loss of TDP-43 function resulting from inappropriate cleavage, translocation from the nucleus, or its sequestration into inclusions could play important roles in neurodegeneration. However, it is not known whether TDP-43 fragments directly mediate toxicity and, more specifically, whether their abnormal aggregation is a cause or consequence of pathogenesis. We report that the ectopic expression of a ≈25-kDa TDP-43 fragment corresponding to the C-terminal truncation product of caspase-cleaved TDP-43 leads to the formation of toxic, insoluble, and ubiquitin- and phospho-positive cytoplasmic inclusions within cells. The 25-kDa C-terminal fragment is more prone to phosphorylation at S409/S410 than full-length TDP-43, but phosphorylation at these sites is not required for inclusion formation or toxicity. Although this fragment shows no biological activity, its exogenous expression neither inhibits the function nor causes the sequestration of full-length nuclear TDP-43, suggesting that the 25-kDa fragment can induce cell death through a toxic gain-of-function. Finally, by generating a conformation-dependent antibody that detects C-terminal fragments, we show that this toxic cleavage product is specific for pathologic inclusions in human TDP-43 proteinopathies.


PLOS Genetics | 2008

Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis

Nicola J. Rutherford; Yong Jie Zhang; Matt Baker; Jennifer Gass; NiCole Finch; Yafei Xu; Heather Stewart; Brendan J. Kelley; Karen M. Kuntz; Richard Crook; Jemeen Sreedharan; Caroline Vance; Eric J. Sorenson; Carol F. Lippa; Eileen H. Bigio; Daniel H. Geschwind; David S. Knopman; Hiroshi Mitsumoto; Ronald C. Petersen; Neil R. Cashman; Mike Hutton; Christopher Shaw; Kevin B. Boylan; Bradley F. Boeve; Neill R. Graff-Radford; Zbigniew K. Wszolek; Richard J. Caselli; Dennis W. Dickson; Ian R. Mackenzie; Leonard Petrucelli

The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43–positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the ∼25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.


Lancet Neurology | 2007

Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative

Rosa Rademakers; Matt Baker; Jennifer Gass; Jennifer Adamson; Edward D. Huey; Parastoo Momeni; Salvatore Spina; Giovanni Coppola; Anna Karydas; Heather Stewart; Nancy Johnson; Ging Yuek R Hsiung; Brendan J. Kelley; Karen M. Kuntz; Ellen J. Steinbart; Elisabeth McCarty Wood; Chang En Yu; Keith A. Josephs; Eric J. Sorenson; Kyle B. Womack; Sandra Weintraub; Stuart Pickering-Brown; Peter R. Schofield; William S. Brooks; Vivianna M. Van Deerlin; Julie S. Snowden; Christopher M. Clark; Andrew Kertesz; Kevin B. Boylan; Bernardino Ghetti

BACKGROUND The progranulin gene (GRN) is mutated in 5-10% of patients with frontotemporal lobar degeneration (FTLD) and in about 20% of patients with familial FTLD. The most common mutation in GRN is Arg493X. We aimed to establish the contribution of this mutation to FTLD and related disorders. METHODS We measured the frequency of Arg493X in 3405 unrelated patients with various neurodegenerative diseases using Taqman single-nucleotide polymorphism (SNP) genotyping. Clinicopathological characterisation and shared haplotype analysis were done for 30 families with FTLD who carry Arg493X. To investigate the effect of potential modifying loci, we did linear regression analyses with onset age as the covariate for GRN variants, for genotypes of the apolipoprotein E gene (APOE), and for haplotypes of the microtubule-associated protein tau gene (MAPT). FINDINGS Of 731 patients with FTLD, 16 (2%) carried Arg493X. This mutation was not detected in 2674 patients who did not have FTLD. In 37 patients with Arg493X from 30 families with FTLD, clinical diagnoses included frontotemporal dementia, primary progressive aphasia, corticobasal syndrome, and Alzheimers disease. Range of onset age was 44-69 years. In all patients who came to autopsy (n=13), the pathological diagnosis was FTLD with neuronal inclusions that contained TAR DNA-binding protein or ubiquitin, but not tau. Neurofibrillary tangle pathology in the form of Braak staging correlated with overall neuropathology in the Arg493X carriers. Haplotype analyses suggested that Arg493X arose twice, with a single founder for 27 families. Linear regression analyses suggested that patients with SNP rs9897528 on their wild-type GRN allele have delayed symptom onset. Onset ages were not associated with the MAPT H1 or H2 haplotypes or APOE genotypes, but early memory deficits were associated with the presence of an APOE epsilon4 allele. INTERPRETATION Clinical heterogeneity is associated with GRN haploinsufficiency, and genetic variability on the wild-type GRN allele might have a role in the age-related disease penetrance of GRN mutations.


American Journal of Pathology | 2010

Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging.

Zeshan Ahmed; Hong Sheng; Ya Fei Xu; Wen Lang Lin; Amy E. Innes; Jennifer Gass; Xin Yu; Harold Hou; Shuichi Chiba; Keitaro Yamanouchi; Malcolm A. Leissring; Leonard Petrucelli; Masugi Nishihara; Mike Hutton; Eileen McGowan; Dennis W. Dickson; Jada Lewis

Progranulin (PGRN) is involved in wound repair, inflammation, and tumor formation, but its function in the central nervous system is unknown. Roles in development, sexual differentiation, and long-term neuronal survival have been suggested. Mutations in the GRN gene resulting in partial loss of the encoded PGRN protein cause frontotemporal lobar degeneration with ubiquitin immunoreactive inclusions. We sought to understand the neuropathological consequences of loss of PGRN function throughout the lifespan of GRN-deficient ((-/+) and (-/-)) mice. An aged series of GRN-deficient and wild-type mice were compared by histology, immunohistochemistry, and electron microscopy. Although GRN-deficient mice were viable, GRN(-/-) mice were produced at lower than predicted frequency. Neuropathologically, GRN(-/+) were indistinguishable from controls; however, GRN(-/-) mice developed age-associated, abnormal intraneuronal ubiquitin-positive autofluorescent lipofuscin. Lipofuscin was noted in aged GRN(+/+) mice at levels comparable with those of young GRN(-/-) mice. GRN(-/-) mice developed microgliosis, astrogliosis, and tissue vacuolation, with focal neuronal loss and severe gliosis apparent in the oldest GRN(-/-) mice. Although no overt frontotemporal lobar degeneration with ubiquitin immunoreactive inclusions type- or TAR DNA binding protein-43-positive lesions were observed, robust lipofuscinosis and ubiquitination in GRN(-/-) mice is strikingly similar to changes associated with aging and cellular decline in humans and animal models. Our data suggests that PGRN plays a key role in maintaining neuronal function during aging and supports the notion that PGRN is a trophic factor essential for long-term neuronal survival.


Molecular Neurodegeneration | 2012

Progranulin regulates neuronal outgrowth independent of Sortilin

Jennifer Gass; Wing C. Lee; Casey Cook; NiCole Finch; Caroline Stetler; Karen Jansen-West; Jada Lewis; Christopher D. Link; Rosa Rademakers; Anders Nykjaer; Leonard Petrucelli

BackgroundProgranulin (PGRN), a widely secreted growth factor, is involved in multiple biological functions, and mutations located within the PGRN gene (GRN) are a major cause of frontotemporal lobar degeneration with TDP-43-positive inclusions (FLTD-TDP). In light of recent reports suggesting PGRN functions as a protective neurotrophic factor and that sortilin (SORT1) is a neuronal receptor for PGRN, we used a Sort1-deficient (Sort1−/−) murine primary hippocampal neuron model to investigate whether PGRN’s neurotrophic effects are dependent on SORT1. We sought to elucidate this relationship to determine what role SORT1, as a regulator of PGRN levels, plays in modulating PGRN’s neurotrophic effects.ResultsAs the first group to evaluate the effect of PGRN loss in Grn knockout primary neuronal cultures, we show neurite outgrowth and branching are significantly decreased in Grn−/− neurons compared to wild-type (WT) neurons. More importantly, we also demonstrate that PGRN overexpression can rescue this phenotype. However, the recovery in outgrowth is not observed following treatment with recombinant PGRN harboring missense mutations p.C139R, p.P248L or p.R432C, indicating that these mutations adversely affect the neurotrophic properties of PGRN. In addition, we also present evidence that cleavage of full-length PGRN into granulin peptides is required for increased neuronal outgrowth, suggesting that the neurotrophic functions of PGRN are contained within certain granulins. To further characterize the mechanism by which PGRN impacts neuronal morphology, we assessed the involvement of SORT1. We demonstrate that PGRN induced-outgrowth occurs in the absence of SORT1 in Sort1−/− cultures.ConclusionWe demonstrate that loss of PGRN impairs proper neurite outgrowth and branching, and that exogenous PGRN alleviates this impairment. Furthermore, we determined that exogenous PGRN induces outgrowth independent of SORT1, suggesting another receptor(s) is involved in PGRN induced neuronal outgrowth.


Nature Neuroscience | 2016

C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins.

Yong Jie Zhang; Tania F. Gendron; Jonathan C. Grima; Hiroki Sasaguri; Karen Jansen-West; Ya Fei Xu; Rebecca B. Katzman; Jennifer Gass; Melissa E. Murray; Mitsuru Shinohara; Wen Lang Lin; Aliesha Garrett; Jeannette N. Stankowski; Lillian M. Daughrity; Jimei Tong; Emilie A. Perkerson; Mei Yue; Jeannie Chew; Monica Castanedes-Casey; Aishe Kurti; Zizhao S. Wang; Amanda M. Liesinger; Jeremy D. Baker; Jie Jiang; Clotilde Lagier-Tourenne; Dieter Edbauer; Don W. Cleveland; Rosa Rademakers; Kevin B. Boylan; Guojun Bu

Neuronal inclusions of poly(GA), a protein unconventionally translated from G4C2 repeat expansions in C9ORF72, are abundant in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) caused by this mutation. To investigate poly(GA) toxicity, we generated mice that exhibit poly(GA) pathology, neurodegeneration and behavioral abnormalities reminiscent of FTD and ALS. These phenotypes occurred in the absence of TDP-43 pathology and required poly(GA) aggregation. HR23 proteins involved in proteasomal degradation and proteins involved in nucleocytoplasmic transport were sequestered by poly(GA) in these mice. HR23A and HR23B similarly colocalized to poly(GA) inclusions in C9ORF72 expansion carriers. Sequestration was accompanied by an accumulation of ubiquitinated proteins and decreased xeroderma pigmentosum C (XPC) levels in mice, indicative of HR23A and HR23B dysfunction. Restoring HR23B levels attenuated poly(GA) aggregation and rescued poly(GA)-induced toxicity in neuronal cultures. These data demonstrate that sequestration and impairment of nuclear HR23 and nucleocytoplasmic transport proteins is an outcome of, and a contributor to, poly(GA) pathology.


American Journal of Human Genetics | 2007

Identification of a Novel Risk Locus for Progressive Supranuclear Palsy by a Pooled Genomewide Scan of 500,288 Single-Nucleotide Polymorphisms

Stacey Melquist; David Craig; Matthew J. Huentelman; Richard Crook; John V. Pearson; Matt Baker; Victoria Zismann; Jennifer Gass; Jennifer Adamson; Szabolcs Szelinger; Jason J. Corneveaux; Ashley Cannon; Keith D. Coon; Sarah Lincoln; Charles H. Adler; Paul Tuite; Donald B. Calne; Eileen H. Bigio; Ryan J. Uitti; Zbigniew K. Wszolek; Lawrence I. Golbe; Richard J. Caselli; Neill R. Graff-Radford; Irene Litvan; Matthew J. Farrer; Dennis W. Dickson; Mike Hutton; Dietrich A. Stephan

To date, only the H1 MAPT haplotype has been consistently associated with risk of developing the neurodegenerative disease progressive supranuclear palsy (PSP). We hypothesized that additional genetic loci may be involved in conferring risk of PSP that could be identified through a pooling-based genomewide association study of >500,000 SNPs. Candidate SNPs with large differences in allelic frequency were identified by ranking all SNPs by their probe-intensity difference between cohorts. The MAPT H1 haplotype was strongly detected by this methodology, as was a second major locus on chromosome 11p12-p11 that showed evidence of association at allelic (P<.001), genotypic (P<.001), and haplotypic (P<.001) levels and was narrowed to a single haplotype block containing the DNA damage-binding protein 2 (DDB2) and lysosomal acid phosphatase 2 (ACP2) genes. Since DNA damage and lysosomal dysfunction have been implicated in aging and neurodegenerative processes, both genes are viable candidates for conferring risk of disease.


Neurology | 2008

Study of a Swiss dopa-responsive dystonia family with a deletion in GCH1: Redefining DYT14 as DYT5

Christian Wider; Stacey Melquist; M. Hauf; Alessandra Solida; Stephanie A. Cobb; Jennifer M. Kachergus; Jennifer Gass; Keith D. Coon; Matt Baker; Ashley Cannon; Dietrich A. Stephan; D Schorderet; J. Ghika; Pierre Burkhard; Gregory Kapatos; Mike Hutton; Matthew J. Farrer; Zbigniew K. Wszolek; François Vingerhoets

Objective: To report the study of a multigenerational Swiss family with dopa-responsive dystonia (DRD). Methods: Clinical investigation was made of available family members, including historical and chart reviews. Subject examinations were video recorded. Genetic analysis included a genome-wide linkage study with microsatellite markers (STR), GTP cyclohydrolase I (GCH1) gene sequencing, and dosage analysis. Results: We evaluated 32 individuals, of whom 6 were clinically diagnosed with DRD, with childhood-onset progressive foot dystonia, later generalizing, followed by parkinsonism in the two older patients. The response to levodopa was very good. Two additional patients had late onset dopa-responsive parkinsonism. Three other subjects had DRD symptoms on historical grounds. We found suggestive linkage to the previously reported DYT14 locus, which excluded GCH1. However, further study with more stringent criteria for disease status attribution showed linkage to a larger region, which included GCH1. No mutation was found in GCH1 by gene sequencing but dosage methods identified a novel heterozygous deletion of exons 3 to 6 of GCH1. The mutation was found in seven subjects. One of the patients with dystonia represented a phenocopy. Conclusions: This study rules out the previously reported DYT14 locus as a cause of disease, as a novel multiexonic deletion was identified in GCH1. This work highlights the necessity of an accurate clinical diagnosis in linkage studies as well as the need for appropriate allele frequencies, penetrance, and phenocopy estimates. Comprehensive sequencing and dosage analysis of known genes is recommended prior to genome-wide linkage analysis. GLOSSARY: DRD = dopa-responsive dystonia; GCH1 = GTP cyclohydrolase I; SNP = single nucleotide polymorphisms; STR = short tandem repeats.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Misregulation of human sortilin splicing leads to the generation of a nonfunctional progranulin receptor.

Mercedes Prudencio; Karen Jansen-West; Wing C. Lee; Tania F. Gendron; Yong Jie Zhang; Ya Fei Xu; Jennifer Gass; Cristiana Stuani; Caroline Stetler; Rosa Rademakers; Dennis W. Dickson; Emanuele Buratti; Leonard Petrucelli

Sortilin 1 regulates the levels of brain progranulin (PGRN), a neurotrophic growth factor that, when deficient, is linked to cases of frontotemporal lobar degeneration with TAR DNA-binding protein-43 (TDP-43)–positive inclusions (FTLD-TDP). We identified a specific splicing enhancer element that regulates the inclusion of a sortilin exon cassette (termed Ex17b) not normally present in the mature sortilin mRNA. This enhancer element is consistently present in sortilin RNA of mice and other species but absent in primates, which carry a premature stop codon within the Ex17b sequence. In the absence of TDP-43, which acts as a regulatory inhibitor, Ex17b is included in the sortilin mRNA. In humans, in contrast to mice, the inclusion of Ex17b in sortilin mRNA generates a truncated, nonfunctional, extracellularly released protein that binds to but does not internalize PGRN, essentially acting as a decoy receptor. Based on these results, we propose a potential mechanism linking misregulation of sortilin splicing with altered PGRN metabolism.

Collaboration


Dive into the Jennifer Gass's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosa Rademakers

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge