Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer H. Fewell is active.

Publication


Featured researches published by Jennifer H. Fewell.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Genetic determination of the queen caste in an ant hybrid zone

Glennis E. Julian; Jennifer H. Fewell; Jürgen Gadau; Robert A. Johnson; Debbie Larrabee

The question of how reproductives and sterile workers differentiate within eusocial groups has long been a core issue in sociobiology because it requires the loss of individual direct fitness in favor of indirect or group-level fitness gains. The evolution of social behavior requires that differentiation between workers and female reproductives be environmentally determined, because genetically determined sterility would be quickly eliminated. Nevertheless, we report clear evidence of genetic caste determination in populations of two seed harvester ant species common to the southwestern USA, Pogonomyrmex rugosus and Pogonomyrmex barbatus. The genetic differentiation between workers and queens is found only in areas of sympatry of the two species, and thus appears to arisen from hybridization. Our data suggest that this hybridization has had a profound historical effect on the caste determination systems and mating patterns of each of these species.


Behavioral Ecology and Sociobiology | 1988

Energetic and time costs of foraging in harvester ants, Pogonomyrmex occidentalis

Jennifer H. Fewell

SummaryWestern harvester ants, Pogonomyrmex occidentalis, preferentially utilize low vegetational cover pathways. Energetic costs for foraging ants were less than 0.1% of caloric rewards of harvested seeds, suggesting that reduction of energetic cost is not a major benefit of this preference. Walking speed was significantly faster on lower cover routes, increasing net return rates from equidistant artificial food sources. Undisturbed foragers on low cover routes traveled farther, increasing their total foraging area without increasing foraging time. These results suggest that in animals with low costs of locomotion relative to energetic rewards, time costs are more important than direct energetic costs in influencing foraging decisions. In baited experiments with equidistant food sources, preferential use of low cover routes resulted in a large increase in net energetic gain rate, but only a slight increase in energetic efficiency. Under natural conditions, net energetic gain rates were constant for foragers using low and high vegetational cover routes, but foragers using low cover paths had lower efficiencies. This suggests that net energetic gain rate is a more important currency than energetic efficiency for foraging harvester ants.


Science | 1996

Achievement of Thermal Stability by Varying Metabolic Heat Production in Flying Honeybees

Jon F. Harrison; Jennifer H. Fewell; Stephen P. Roberts; H. Glenn Hall

Thermoregulation of the thorax allows endothermic insects to achieve power outputs during flight that are among the highest in the animal kingdom. Flying endothermic insects, including the honeybee Apis mellifera, are believed to thermoregulate almost exclusively by varying heat loss. Here it is shown that a rise in air temperature from 20° to 40°C causes large decreases in metabolic heat production and wing-beat frequency in honeybees during hovering, agitated, or loaded flight. Thus, variation in heat production may be the primary mechanism for achieving thermal stability in flying honeybees, and this mechanism may occur commonly in endothermic insects.


Behavioral Ecology and Sociobiology | 1987

Graded recruitment in a ponerine ant

Michael D. Breed; Jennifer H. Fewell; Allen J. Moore; Kristina R. Williams

Summary(1) The giant tropical ant, Paraponera clavata, exhibits graded recruitment responses, depending on the type, quantity, and quality of a food source. More ants are initially recruited to a large prey or scavenge item than to a large quantity of sugar water. (2) Individual ants encountering prey items gauge the size and/or unwieldiness of the item, regardless of the weight, when determining whether to recruit. (3) The trail pheromone of this species is often used as an orientation device by individual ants, independent of recruitment of nestmates. (4) It is proposed that the foraging behavior of P. clavata represents one of the evolutionary transitions from the independent foraging activities of the primitive ants to the highly coordinated cooperative foraging activities of many “higher” ants.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2002

Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera

Jon F. Harrison; Jennifer H. Fewell

Flying honey bees demonstrate highly variable metabolic rates. The lowest reported values (approximately 0.3 Wg(-1)) occur in tethered bees generating the minimum lift to support their body weight, free-flying 2-day old bees, winter bees, or bees flying at high air temperatures (45 degrees C). The highest values (approximately 0.8 Wg(-1)) occur in foragers that are heavily loaded or flying in low-density air. In different studies, flight metabolic rate has increased, decreased, or remained constant with air temperature. Current research collectively suggests that this variation occurs because flight metabolic rates decrease at thorax temperatures above or below 38 degrees C. At 30 degrees C, approximately 30% of colonial energy is spent during typical foraging, so variation in flight metabolic rate can strongly affect colony-level energy balance. Higher air temperatures tend to increase colonial net gain rates, efficiencies and honey storage rates due to lower metabolic rates during flight and in the hive. Variation in flight metabolism has a clear genetic basis. Different genetic strains of honey bees often differ in flight metabolic rate, and these differences in flight physiology can be correlated with foraging effort, suggesting a possible pathway for selection effects on flight metabolism.


Behavioral Ecology and Sociobiology | 2000

Colony-level selection effects on individual and colony foraging task performance in honeybees, Apis mellifera L.

Jennifer H. Fewell; Robert E. Page

Abstract In honeybees, as in other highly eusocial species, tasks are performed by individual workers, but selection for worker task phenotypes occurs at the colony level. We investigated the effect of colony-level selection for pollen storage levels on the foraging behavior of individual honeybee foragers to determine (1) the relationship between genotype and phenotypic expression of foraging traits at the individual level and (2) how genetically based variation in worker task phenotype is integrated into colony task organization. We placed workers from lines selected at the colony level for high or low pollen stores together with hybrid workers into a common hive environment with controlled access to resources. Workers from the selected lines showed reciprocal variation in pollen and nectar collection. High-pollen-line foragers collected pollen preferentially, and low- pollen-line workers collected nectar, indicating that the two tasks covary genetically. Hybrid workers were not intermediate in phenotype, but instead showed directional dominance for nectar collection. We monitored the responses of workers from the selected strains to changes in internal (colony) and external (resource) stimulus levels for pollen foraging to measure the interaction between genotypic variation in foraging behavior and stimulus environment. Under low-stimulus conditions, the foraging group was over-represented by high-pollen-line workers. However, the evenness in distribution of the focal genetic groups increased as foraging stimuli increased. These data are consistent with a model where task choice is a consequence of genetically based response thresholds, and where genotypic diversity allows colony flexibility by providing a range of stimulus thresholds.


The Journal of Experimental Biology | 2003

Juvenile hormone and division of labor in honey bee colonies: effects of allatectomy on flight behavior and metabolism.

Joseph P. Sullivan; Susan E. Fahrbach; Jon F. Harrison; Elizabeth A. Capaldi; Jennifer H. Fewell; Gene E. Robinson

SUMMARY Three experiments were performed to determine why removal of the corpora allata (the glands that produce juvenile hormone) causes honey bees to fail to return to their hive upon initiating flight. In Experiment 1, the naturally occurring flights of allatectomized bees were tracked with radar to determine whether the deficit is physical or cognitive. The results indicated a physical impairment: allatectomized bees had a significantly slower ground speed than sham and untreated bees during orientation flights, but otherwise attributes such as flight range and area were normal. Flight impairment was confirmed in Experiment 2, based on observations of takeoff made in the field at the hive entrance. The allatectomized group had a significantly smaller percentage of flightworthy bees than did the sham and untreated groups. Experiment 3 confirmed the flight impairment in laboratory tests and showed that allatectomy causes a decrease in metabolic rate. Allatectomized bees had significantly lower metabolic rates than untreated and sham bees, while allatectomized bees receiving hormone replacement had intermediate values. These results indicate that allatectomy causes flight impairment, probably partly due to effects on metabolic rate. They also suggest that juvenile hormone plays an additional, previously unknown, role in coordinating the physiological underpinning of division of labor in honey bee colonies.


Ecology | 2006

DISTRIBUTION AND EVOLUTION OF GENETIC CASTE DETERMINATION IN POGONOMYRMEX SEED-HARVESTER ANTS

Kirk E. Anderson; Jürgen Gadau; Brendon M. Mott; Robert A. Johnson; Annette Altamirano; Christoph Strehl; Jennifer H. Fewell

We examined the distribution and ancestral relationships of genetic caste determination (GCD) in 46 populations of the seed-harvester ants Pogonomyrmex barbatus and P. rugosus across the east-to-west range of their distributions. Using a mtDNA sequence and two nuclear markers diagnostic for GCD, we distinguished three classes of population phenotypes: those with GCD, no evidence of GCD, and mixed (both GCD and non-GCD colonies present). The GCD phenotype was geographically widespread across the range of both morphospecies, occurring in 20 of 46 sampled populations. Molecular data suggest three reproductively isolated and cryptic lineages within each morphospecies, and no present hybridization. Mapping the GCD phenotype onto a mtDNA phylogeny indicates that GCD in P. rugosus was acquired from P. barbatus, suggesting that interspecific hybridization may not be the causal agent of GCD, but may simply provide an avenue for GCD to spread from one species (or subspecies) to another. We hypothesize that the origin of GCD involved a genetic mutation with a major effect on caste determination. This mutation generates genetic conflict and results in the partitioning and maintenance of distinct allele (or gene set) combinations that confer differences in developmental caste fate. The outcome is two dependent lineages within each population; inter-lineage matings produce workers, while intra-lineage matings produce reproductives. Both lineages are needed to produce a caste-functional colony, resulting in two reproductively isolated yet interdependent lineages. Pogonomyrmex populations composed of dependent lineages provide a unique opportunity to investigate genetic variation underlying phenotypic plasticity and its impact on the evolution of social structure.


The Journal of Experimental Biology | 2003

Effects of load type (pollen or nectar) and load mass on hovering metabolic rate and mechanical power output in the honey bee Apis mellifera.

Erica Feuerbacher; Jennifer H. Fewell; Stephen P. Roberts; Elizabeth F. Smith; Jon F. Harrison

SUMMARY In this study we tested the effect of pollen and nectar loading on metabolic rate (in mW) and wingbeat frequency during hovering, and also examined the effect of pollen loading on wing kinematics and mechanical power output. Pollen foragers had hovering metabolic rates approximately 10% higher than nectar foragers, regardless of the amount of load carried. Pollen foragers also had a more horizontal body position and higher inclination of stroke plane than measured previously for honey bees (probably nectar foragers). Thorax temperatures ranked pollen > nectar > water foragers, and higher flight metabolic rate could explain the higher thorax temperature of pollen foragers. Load mass did not affect hovering metabolic rate or wingbeat frequency in a regression-model experiment. However, using an analysis of variance (ANOVA) design, loaded pollen and nectar foragers (mean loads 27% and 40% of body mass, respectively) significantly increased metabolic rate by 6%. Mean pollen loads of 18% of body mass had no effect on wingbeat frequency, stroke amplitude, body angle or inclination of stroke plane, but increased the calculated mechanical power output by 16–18% (depending on the method of estimating drag). A rise in lift coefficient as bees carry loads without increasing wingbeat frequency or stroke amplitude (and only minimal increases in metabolic rate) suggests an increased use of unsteady power-generating mechanisms.


Behavioral Ecology and Sociobiology | 1999

Division of labor in a dynamic environment: response by honeybees (Apis mellifera) to graded changes in colony pollen stores

Jennifer H. Fewell; Susan M. Bertram

Abstract A fundamental requirement of task regulation in social groups is that it must allow colony flexibility. We tested assumptions of three task regulation models for how honeybee colonies respond to graded changes in need for a specific task, pollen foraging. We gradually changed colony pollen stores and measured behavioral and genotypic changes in the foraging population. Colonies did not respond in a graded manner, but in six of seven cases showed a stepwise change in foraging activity as pollen storage levels moved beyond a set point. Changes in colony performance resulted from changes in recruitment of new foragers to pollen collection, rather than from changes in individual foraging effort. Where we were able to track genotypic variation, increases in pollen foraging were accompanied by a corresponding increase in the genotypic diversity of pollen foragers. Our data support previous findings that genotypic variation plays an important role in task regulation. However, the stepwise change in colony behavior suggests that colony foraging flexibility is best explained by an integrated model incorporating genotypic variation in task choice, but in which colony response is amplified by social interactions.

Collaboration


Dive into the Jennifer H. Fewell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürgen Gadau

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. Breed

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge