Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer J. Tsai is active.

Publication


Featured researches published by Jennifer J. Tsai.


Immunity | 2012

Interleukin-22 Protects Intestinal Stem Cells from Immune-Mediated Tissue Damage and Regulates Sensitivity to Graft versus Host Disease

Alan M. Hanash; Jarrod A. Dudakov; Guoqiang Hua; Margaret H. O’Connor; Lauren F. Young; Natalie V. Singer; Mallory L. West; Robert R. Jenq; Amanda M. Holland; Lucy W. Kappel; Arnab Ghosh; Jennifer J. Tsai; Uttam K. Rao; Nury Yim; Odette M. Smith; Enrico Velardi; Elena B. Hawryluk; George F. Murphy; Chen Liu; Lynette A. Fouser; Richard Kolesnick; Bruce R. Blazar; Marcel R.M. van den Brink

Little is known about the maintenance of intestinal stem cells (ISCs) and progenitors during immune-mediated tissue damage or about the susceptibility of transplant recipients to tissue damage mediated by the donor immune system during graft versus host disease (GVHD). We demonstrate here that deficiency of recipient-derived IL-22 increased acute GVHD tissue damage and mortality, that ISCs were eliminated during GVHD, and that ISCs as well as their downstream progenitors expressed the IL-22 receptor. Intestinal IL-22 was produced after bone marrow transplant by IL-23-responsive innate lymphoid cells (ILCs) from the transplant recipients, and intestinal IL-22 increased in response to pretransplant conditioning. However, ILC frequency and IL-22 amounts were decreased by GVHD. Recipient IL-22 deficiency led to increased crypt apoptosis, depletion of ISCs, and loss of epithelial integrity. Our findings reveal IL-22 as a critical regulator of tissue sensitivity to GVHD and a protective factor for ISCs during inflammatory intestinal damage.


Science | 2012

Interleukin-22 Drives Endogenous Thymic Regeneration in Mice

Jarrod A. Dudakov; Alan M. Hanash; Robert R. Jenq; Lauren F. Young; Arnab Ghosh; Natalie V. Singer; Mallory L. West; Odette M. Smith; Amanda M. Holland; Jennifer J. Tsai; Richard L. Boyd; Marcel R.M. van den Brink

IL-22 Protects the Thymus One of the side effects associated with radiation treatment and some types of chemotherapy is damage to the thymus. Immunological T cells develop in the thymus, and so damage to this organ results in immunodeficiency and increased susceptibility to infectious disease. Although the organ eventually recovers, therapies that speed this recovery process are of interest. Dudakov et al. (p. 91, published online 1 March; see the Perspective by Bhandoola and Artis) now show in mice that interleukin-22 (IL-22) production in the thymus is increased in response to radiation damage and that this cytokine promotes thymic repair. After radiation treatment, IL-23 production by thymic dendritic cells induced IL-22 secretion by a population of radio-resistant innate lymphoid cells. IL-22 appeared to mediate its effects by promoting the survival and proliferation of thymic epithelial cells. Damage to the thymus caused by infection or radiation is reversed by a cytokine. Endogenous thymic regeneration is a crucial function that allows for renewal of immune competence after stress, infection, or immunodepletion. However, the mechanisms governing this regeneration remain poorly understood. We detail such a mechanism, centered on interleukin-22 (IL-22) and triggered by the depletion of CD4+CD8+ double-positive thymocytes. Intrathymic levels of IL-22 were increased after thymic insult, and thymic recovery was impaired in IL-22–deficient mice. IL-22, which signaled through thymic epithelial cells and promoted their proliferation and survival, was up-regulated by radio-resistant RORγ(t)+CCR6+NKp46– lymphoid tissue inducer cells after thymic injury in an IL-23–dependent manner. Administration of IL-22 enhanced thymic recovery after total body irradiation. These studies reveal mechanisms of endogenous thymic repair and offer innovative regenerative strategies for improving immune competence.


Nature Cell Biology | 2013

Nrf2 regulates haematopoietic stem cell function

Jennifer J. Tsai; Jarrod A. Dudakov; Koichi Takahashi; Jae Hung Shieh; Enrico Velardi; Amanda M. Holland; Natalie V. Singer; Mallory L. West; Odette M. Smith; Lauren F. Young; Yusuke Shono; Arnab Ghosh; Alan M. Hanash; Hien Tran; Malcolm A. S. Moore; Marcel R.M. van den Brink

Coordinating the balance between haematopoietic stem cell (HSC) quiescence and self-renewal is crucial for maintaining haematopoiesis lifelong. Equally important for haematopoietic function is modulating HSC localization within the bone marrow niches, as maintenance of HSC function is tightly controlled by a complex network of intrinsic molecular mechanisms and extrinsic signalling interactions with their surrounding microenvironment. In this study we demonstrate that nuclear factor erythroid 2-related factor 2 (Nfe2l2, or Nrf2), well established as a global regulator of the oxidative stress response, plays a regulatory role in several aspects of HSC homeostasis. Nrf2 deficiency results in an expansion of the haematopoietic stem and progenitor cell compartment due to cell-intrinsic hyperproliferation, which was accomplished at the expense of HSC quiescence and self-renewal. We further show that Nrf2 modulates both migration and retention of HSCs in their niche. Moreover, we identify a previously unrecognized link between Nrf2 and CXCR4, contributing, at least partially, to the maintenance of HSC function.


Science Translational Medicine | 2016

Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice

Yusuke Shono; Melissa D. Docampo; Jonathan U. Peled; Suelen M. Perobelli; Enrico Velardi; Jennifer J. Tsai; Ann E. Slingerland; Odette M. Smith; Lauren F. Young; Jyotsna Gupta; Sophia R. Lieberman; Hillary Jay; Katya F. Ahr; Kori A. Porosnicu Rodriguez; Ke Xu; Marco Calarfiore; Hendrik Poeck; Silvia Caballero; Sean M. Devlin; Franck Rapaport; Jarrod A. Dudakov; Alan M. Hanash; Boglarka Gyurkocza; George F. Murphy; Camilla Borges Ferreira Gomes; Chen Liu; Eli L. Moss; Shannon B. Falconer; Ami S. Bhatt; Ying Taur

Treating neutropenic fever with broad-spectrum antibiotics after allogeneic hematopoietic stem cell transplant is associated with an increase in graft-versus-host disease in mice and humans. Antibiotics for allogeneic transplant—A double-edged sword Patients undergoing allogeneic hematopoietic stem cell transplantation often receive antibiotics for infections, which can also unfortunately kill intestinal bacteria. These symbiotic bacteria in the gut generally do not cause disease and are thought to suppress inflammation. In a new study, Shono et al. examined the records of 857 transplant patients and found that certain antibiotics were linked with development of graft-versus-host disease (GVHD), which can cause severe intestinal inflammation. Using a mouse model, the authors showed that these antibiotics may select for bacteria that consume intestinal mucus and lead to loss of this important layer of protection for the gut, thus exacerbating GVHD in the intestine. This study suggests that not all antibiotic regimens are appropriate for treating transplant patients. Intestinal bacteria may modulate the risk of infection and graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Allo-HSCT recipients often develop neutropenic fever, which is treated with antibiotics that may target anaerobic bacteria in the gut. We retrospectively examined 857 allo-HSCT recipients and found that treatment of neutropenic fever with imipenem-cilastatin and piperacillin-tazobactam antibiotics was associated with increased GVHD-related mortality at 5 years (21.5% for imipenem-cilastatin–treated patients versus 13.1% for untreated patients, P = 0.025; 19.8% for piperacillin-tazobactam–treated patients versus 11.9% for untreated patients, P = 0.007). However, two other antibiotics also used to treat neutropenic fever, aztreonam and cefepime, were not associated with GVHD-related mortality (P = 0.78 and P = 0.98, respectively). Analysis of stool specimens from allo-HSCT recipients showed that piperacillin-tazobactam administration was associated with perturbation of gut microbial composition. Studies in mice demonstrated aggravated GVHD mortality with imipenem-cilastatin or piperacillin-tazobactam compared to aztreonam (P < 0.01 and P < 0.05, respectively). We found pathological evidence for increased GVHD in the colon of imipenem-cilastatin–treated mice (P < 0.05), but no difference in the concentration of short-chain fatty acids or numbers of regulatory T cells. Notably, imipenem-cilastatin treatment of mice with GVHD led to loss of the protective mucus lining of the colon (P < 0.01) and the compromising of intestinal barrier function (P < 0.05). Sequencing of mouse stool specimens showed an increase in Akkermansia muciniphila (P < 0.001), a commensal bacterium with mucus-degrading capabilities, raising the possibility that mucus degradation may contribute to murine GVHD. We demonstrate an underappreciated risk for the treatment of allo-HSCT recipients with antibiotics that may exacerbate GVHD in the colon.


Journal of Clinical Investigation | 2010

The cytolytic molecules Fas ligand and TRAIL are required for murine thymic graft-versus-host disease

Il-Kang Na; Sydney X. Lu; Nury Yim; Gabrielle L. Goldberg; Jennifer J. Tsai; Uttam K. Rao; Odette M. Smith; Christopher King; David Suh; Daniel Hirschhorn-Cymerman; Lia Palomba; Olaf Penack; Amanda M. Holland; Robert R. Jenq; Arnab Ghosh; Hien Tran; Taha Merghoub; Chen Liu; Gregory D. Sempowski; Melissa S. Ventevogel; Nicole Beauchemin; Marcel R.M. van den Brink

Thymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions between donor alloreactive T cells and thymic tissues remain poorly defined. Using clinically relevant murine allo-BMT models, we show here that even minimal numbers of donor alloreactive T cells, which caused mild nonlethal systemic graft-versus-host disease, were sufficient to damage the thymus, delay T lineage reconstitution, and compromise donor peripheral T cell function. Furthermore, to mediate tGVHD, donor alloreactive T cells required trafficking molecules, including CCR9, L selectin, P selectin glycoprotein ligand-1, the integrin subunits alphaE and beta7, CCR2, and CXCR3, and costimulatory/inhibitory molecules, including Ox40 and carcinoembryonic antigen-associated cell adhesion molecule 1. We found that radiation in BMT conditioning regimens upregulated expression of the death receptors Fas and death receptor 5 (DR5) on thymic stromal cells (especially epithelium), while decreasing expression of the antiapoptotic regulator cellular caspase-8-like inhibitory protein. Donor alloreactive T cells used the cognate proteins FasL and TNF-related apoptosis-inducing ligand (TRAIL) (but not TNF or perforin) to mediate tGVHD, thereby damaging thymic stromal cells, cytoarchitecture, and function. Strategies that interfere with Fas/FasL and TRAIL/DR5 interactions may therefore represent a means to attenuate tGVHD and improve T cell reconstitution in allo-BMT recipients.


Journal of Experimental Medicine | 2014

Sex steroid blockade enhances thymopoiesis by modulating Notch signaling

Enrico Velardi; Jennifer J. Tsai; Amanda M. Holland; Tobias Wertheimer; Vionnie W.C. Yu; Johannes L. Zakrzewski; Andrea Z. Tuckett; Natalie V. Singer; Mallory L. West; Odette M. Smith; Lauren F. Young; Fabiana M Kreines; Emily R Levy; Richard L. Boyd; David T. Scadden; Jarrod A. Dudakov; Marcel R.M. van den Brink

Velardi et al. show that sex steroids regulate thymopoiesis by directly modulating Notch signaling, and provide a novel clinical strategy to boost immune regeneration.


Blood | 2010

Concurrent visualization of trafficking, expansion, and activation of T lymphocytes and T-cell precursors in vivo

Il-Kang Na; John C. Markley; Jennifer J. Tsai; Nury Yim; Bradley J. Beattie; Alexander D. Klose; Amanda M. Holland; Arnab Ghosh; Uttam K. Rao; Matthias T. Stephan; Inna Serganova; Elmer Santos; Renier J. Brentjens; Ronald G. Blasberg; Michel Sadelain; Marcel R.M. van den Brink

We have developed a dual bioluminescent reporter system allowing noninvasive, concomitant imaging of T-cell trafficking, expansion, and activation of nuclear factor of activated T cells (NFAT) in vivo. NFAT activation plays an important role in T-cell activation and T-cell development. Therefore we used this system to determine spatial-temporal activation patterns of (1) proliferating T lymphocytes during graft-versus-host disease (GVHD) and (2) T-cell precursors during T-cell development after allogeneic hematopoietic stem cell transplantation (HSCT). In the first days after HSCT, donor T cells migrated to the peripheral lymph nodes and the intestines, whereas the NFAT activation was dominant in the intestines, suggesting an important role for the intestines in the early stages of alloactivation during development of GVHD. After adoptive transfer of in vitro-derived T-cell receptor (TCR) H-Y transgenic T-cell precursors into B6 (H-2(b)) hosts of both sexes, NFAT signaling and development into CD4(+) or CD8(+) single-positive cells could only be detected in the thymus of female recipients indicating either absence of positive selection or prompt depletion of double-positive thymocytes in the male recipients. Because NFAT plays an important role in a wide range of cell types, our system could provide new insights into a variety of biologic processes.


Cancer Discovery | 2014

A Small-Molecule c-Rel Inhibitor Reduces Alloactivation of T Cells without Compromising Antitumor Activity

Yusuke Shono; Andrea Z. Tuckett; Ouk S; Liou Hc; Altan-Bonnet G; Jennifer J. Tsai; Oyler Je; Odette M. Smith; Mallory L. West; Natalie V. Singer; Doubrovina E; Pankov D; Undhad Cv; George F. Murphy; Cecilia Lezcano; Chen Liu; O'Reilly Rj; van den Brink Mr; Johannes L. Zakrzewski

Preventing unfavorable GVHD without inducing broad suppression of the immune system presents a major challenge of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We developed a novel strategy to ameliorate GVHD while preserving graft-versus-tumor (GVT) activity by small molecule-based inhibition of the NF-κB family member c-Rel. Underlying mechanisms included reduced alloactivation, defective gut homing, and impaired negative feedback on interleukin (IL)-2 production, resulting in optimal IL-2 levels, which, in the absence of competition by effector T cells, translated into expansion of regulatory T cells. c-Rel activity was dispensable for antigen-specific T-cell receptor (TCR) activation, allowing c-Rel-deficient T cells to display normal GVT activity. In addition, inhibition of c-Rel activity reduced alloactivation without compromising antigen-specific cytotoxicity of human T cells. Finally, we were able to demonstrate the feasibility and efficacy of systemic c-Rel inhibitor administration. Our findings validate c-Rel as a promising target for immunomodulatory therapy and demonstrate the feasibility and efficacy of pharmaceutical inhibition of c-Rel activity.


Blood | 2013

The central nervous system is a target of acute graft versus host disease in mice

Steffen Hartrampf; Jarrod A. Dudakov; Linda Johnson; Odette M. Smith; Jennifer J. Tsai; Natalie V. Singer; Mallory L. West; Alan M. Hanash; Michael H. Albert; Bingfang Liu; Miklós Tóth; Marcel R.M. van den Brink

Despite significant advances in prevention and management, graft versus host disease (GVHD) is still a leading complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although skin, gut, liver, thymus, and lung are GVHD targets, neurological complications (NC) have also been reported following allo-HSCT. We demonstrate that the central nervous system (CNS) can be a direct target of alloreactive T cells following allo-HSCT in mice. We found significant infiltration of the CNS with donor T lymphocytes and cell death of neurons and neuroglia in allo-HSCT recipients with GVHD. We also found that allo-HSCT recipients with GVHD had deficits in spatial learning/memory and demonstrated increased anxious behavior. These findings highlight CNS sensitivity to damage caused by alloreactive donor T cells and represent the first characterization of target cell subsets and NC during GVHD. Therefore, these clinically relevant studies offer a novel and rational explanation for the well-described neurological symptoms observed after allo-HSCT.


Journal of Clinical Investigation | 2012

Extrathymic development of murine T cells after bone marrow transplantation

Amanda M. Holland; Johannes L. Zakrzewski; Jennifer J. Tsai; Alan M. Hanash; Jarrod A. Dudakov; Odette M. Smith; Mallory L. West; Natalie V. Singer; Jessie Brill; Joseph C. Sun; Marcel R.M. van den Brink

Restoring T cell competence is a significant clinical challenge in patients whose thymic function is severely compromised due to age or cytoreductive conditioning. Here, we demonstrate in mice that mesenteric LNs (MLNs) support extrathymic T cell development in euthymic and athymic recipients of bone marrow transplantation (BMT). Furthermore, in aged murine BMT recipients, the contribution of the MLNs to the generation of T cells was maintained, while the contribution of the thymus was significantly impaired. Thymic impairment resulted in a proportional increase in extrathymic-derived T cell progenitors. Extrathymic development in athymic recipients generated conventional naive TCRαβ T cells with a broad Vβ repertoire and intact functional and proliferative potential. Moreover, in the absence of a functional thymus, immunity against known pathogens could be augmented using engineered precursor T cells with viral specificity. These findings demonstrate the potential of extrathymic T cell development for T cell reconstitution in patients with limited thymic function.

Collaboration


Dive into the Jennifer J. Tsai's collaboration.

Top Co-Authors

Avatar

Odette M. Smith

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Marcel R.M. van den Brink

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alan M. Hanash

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jarrod A. Dudakov

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Robert R. Jenq

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Amanda M. Holland

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Enrico Velardi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mallory L. West

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Natalie V. Singer

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yusuke Shono

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge