Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer J. Verduin is active.

Publication


Featured researches published by Jennifer J. Verduin.


BioScience | 2012

The Central Role of Dispersal in the Maintenance and Persistence of Seagrass Populations

Gary A. Kendrick; Michelle Waycott; Tim J. B. Carruthers; Marion L. Cambridge; Renae Hovey; Siegfried L. Krauss; Paul S. Lavery; Donald H. Les; Ryan J. Lowe; Oriol Mascaró i Vidal; Jillian Lean Sim Ooi; Robert J. Orth; David O. Rivers; Leonardo Ruiz-Montoya; Elizabeth A. Sinclair; John Statton; Jent Kornelis van Dijk; Jennifer J. Verduin

Global seagrass losses parallel significant declines observed in corals and mangroves over the past 50 years. These combined declines have resulted in accelerated global losses to ecosystem services in coastal waters. Seagrass meadows can be extensive (hundreds of square kilometers) and long-lived (thousands of years), with the meadows persisting predominantly through vegetative (clonal) growth. They also invest a large amount of energy in sexual reproduction. In this article, we explore the role that sexual reproduction, pollen, and seed dispersal play in maintaining species distributions, genetic diversity, and connectivity among seagrass populations. We also address the relationship between long-distance dispersal, genetic connectivity, and the maintenance of genetic diversity that may enhance resilience to stresses associated with seagrass loss. Our reevaluation of seagrass dispersal and recruitment has altered our perception of the importance of long-distance dispersal and has revealed extensive dispersal at scales much larger than was previously thought possible.


Koch, E.W., Ackerman, J.D., Verduin, J. <http://researchrepository.murdoch.edu.au/view/author/Verduin, Jennifer.html> and van Keulen, M. <http://researchrepository.murdoch.edu.au/view/author/van Keulen, Michael.html> (2006) Fluid dynamics in seagrass ecology - from molecules to ecosystems. In: Larkum, A.W.D., Orth, R.J. and Duarte, C.M., (eds.) Seagrasses : biology, ecology and conservation. Springer, Dordrecht, The Netherlands, pp. 193-226. | 2007

Fluid dynamics in seagrass ecology - from molecules to ecosystems

Evamaria W. Koch; Josef Daniel Ackerman; Jennifer J. Verduin; Mike van Keulen

Fluid dynamics is the study of the movement of fluids. Among other things, it addresses velocity, acceleration, and the forces exerted by or upon fluids in motion (Daugherty et al.. 1985; White. 1999: Kundu and Cohen, 2002). Fluid dynamics affects every aspect of the existence of seagrasses from the smallest to the largest scale: from the nutrients they obtain to the sediment they colonize; from the pollination of their flowers to the import/export of organic matter to adjacent systems; from the light that reaches their leaves to the organisms that live in the seagrass habitats. Therefore, fluid dynamics is of major importance in seagrass biology, ecology, and ecophysiology. Unfortunately, fluid dynamics is often overlooked in seagrass systems (Koch, 2001). This chapter provides a general background in fluid dynamics and then addresses increasingly larger scales of fluid dynamic processes relevant to seagrass ecology and physiology: molecules (μm), leaves and shoots (mm to cm), seagrass canopies (m), sea- grass landscapes (100—1.000 m), and seagrasses as part of the biosphere (>1.000 m). Although gases are also fluids, this chapter is restricted to water (i.e. compressed fluids), how it flows through seagrasses, the forces it exerts on the plants, and the implications that this has for seagrass systems. Seagrasses are not only affected by water in motion, they also affect the currents, waves and turbulence of the water masses surrounding them. This capacity to alter their own environment is referred to as “ecosystem engineering” (Jones et al.. 1994, 1997; Thomas et al., 2000). Readers are also encouraged to consult a recent review by Okubo et al. (2002) for a discussion on flow in terrestrial and aquatic vegetation including freshwater plants, seagrasses, and kelp.


McMahon, K., van Dijk, K-J, Ruiz-Montoya, L., Kendrick, G.A., Krauss, S.L., Waycott, M., Verduin, J. <http://researchrepository.murdoch.edu.au/view/author/Verduin, Jennifer.html>, Lowe, R., Statton, J., Brown, E. and Duarte, C. (2014) The movement ecology of seagrasses. Proceedings of the Royal Society B: Biological Sciences, 281 (1795). p. 20140878. | 2014

The movement ecology of seagrasses

Kathryn McMahon; Kor-jent van Dijk; Leonardo Ruiz-Montoya; Gary A. Kendrick; Siegfried L. Krauss; Michelle Waycott; Jennifer J. Verduin; Ryan J. Lowe; John Statton; Eloise Brown; Carlos M. Duarte

A movement ecology framework is applied to enhance our understanding of the causes, mechanisms and consequences of movement in seagrasses: marine, clonal, flowering plants. Four life-history stages of seagrasses can move: pollen, sexual propagules, vegetative fragments and the spread of individuals through clonal growth. Movement occurs on the water surface, in the water column, on or in the sediment, via animal vectors and through spreading clones. A capacity for long-distance dispersal and demographic connectivity over multiple timeframes is the novel feature of the movement ecology of seagrasses with significant evolutionary and ecological consequences. The space–time movement footprint of different life-history stages varies. For example, the distance moved by reproductive propagules and vegetative expansion via clonal growth is similar, but the timescales range exponentially, from hours to months or centuries to millennia, respectively. Consequently, environmental factors and key traits that interact to influence movement also operate on vastly different spatial and temporal scales. Six key future research areas have been identified.


Journal of Applied Ecology | 2016

Global analysis of seagrass restoration: the importance of large-scale planting

Marieke M. van Katwijk; Anitra Thorhaug; Núria Marbà; Robert J. Orth; Carlos M. Duarte; Gary A. Kendrick; Inge H. J. Althuizen; Elena Balestri; Guillaume Bernard; Marion L. Cambridge; Alexandra H. Cunha; Cynthia Durance; Wim Giesen; Qiuying Han; Shinya Hosokawa; Wawan Kiswara; Teruhisa Komatsu; Claudio Lardicci; Kun-Seop Lee; Alexandre Meinesz; Masahiro Nakaoka; Katherine R. O'Brien; E.I. Paling; Chris Pickerell; Aryan M. A. Ransijn; Jennifer J. Verduin

In coastal and estuarine systems, foundation species like seagrasses, mangroves, saltmarshes or corals provide important ecosystem services. Seagrasses are globally declining and their reintroduction has been shown to restore ecosystem functions. However, seagrass restoration is often challenging, given the dynamic and stressful environment that seagrasses often grow in. From our world-wide meta-analysis of seagrass restoration trials (1786 trials), we describe general features and best practice for seagrass restoration. We confirm that removal of threats is important prior to replanting. Reduced water quality (mainly eutrophication), and construction activities led to poorer restoration success than, for instance, dredging, local direct impact and natural causes. Proximity to and recovery of donor beds were positively correlated with trial performance. Planting techniques can influence restoration success. The meta-analysis shows that both trial survival and seagrass population growth rate in trials that survived are positively affected by the number of plants or seeds initially transplanted. This relationship between restoration scale and restoration success was not related to trial characteristics of the initial restoration. The majority of the seagrass restoration trials have been very small, which may explain the low overall trial survival rate (i.e. estimated 37%). Successful regrowth of the foundation seagrass species appears to require crossing a minimum threshold of reintroduced individuals. Our study provides the first global field evidence for the requirement of a critical mass for recovery, which may also hold for other foundation species showing strong positive feedback to a dynamic environment.Synthesis and applications. For effective restoration of seagrass foundation species in its typically dynamic, stressful environment, introduction of large numbers is seen to be beneficial and probably serves two purposes. First, a large-scale planting increases trial survival - large numbers ensure the spread of risks, which is needed to overcome high natural variability. Secondly, a large-scale trial increases population growth rate by enhancing self-sustaining feedback, which is generally found in foundation species in stressful environments such as seagrass beds. Thus, by careful site selection and applying appropriate techniques, spreading of risks and enhancing self-sustaining feedback in concert increase success of seagrass restoration.


Fawcett, D. <http://researchrepository.murdoch.edu.au/view/author/Fawcett, Derek.html>, Verduin, J.J. <http://researchrepository.murdoch.edu.au/view/author/Verduin, Jennifer.html>, Shah, M. <http://researchrepository.murdoch.edu.au/view/author/Shah, Monaliben.html>, Sharma, S.B. <http://researchrepository.murdoch.edu.au/view/author/Sharma, Shashi.html> and Poinern, G.E.J. <http://researchrepository.murdoch.edu.au/view/author/Poinern, Gérrard.html> (2017) A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses. Journal of Nanoscience, 2017 . pp. 1-15. | 2017

A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses

Derek Fawcett; Jennifer J. Verduin; Monaliben Shah; Shashi B. Sharma; Gérrard Eddy Jai Poinern

Today there is a growing need to develop reliable, sustainable, and ecofriendly protocols for manufacturing a wide range of metal and metal oxide nanoparticles. The biogenic synthesis of nanoparticles via nanobiotechnology based techniques has the potential to deliver clean manufacturing technologies. These new clean technologies can significantly reduce environmental contamination and decease the hazards to human health resulting from the use of toxic chemicals and solvents currently used in conventional industrial fabrication processes. The largely unexplored marine environment that covers approximately 70% of the earth’s surface is home to many naturally occurring and renewable marine plants. The present review summarizes current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae (commonly known as seaweeds) and seagrasses. Both groups of marine plants contain a wide variety of biologically active compounds and secondary metabolites that enables these plants to act as biological factories for the manufacture of metal and metal oxide nanoparticles.


PLOS ONE | 2015

Linking Seed Photosynthesis and Evolution of the Australian and Mediterranean Seagrass Genus Posidonia

David Celdrán; Javier Lloret; Jennifer J. Verduin; Mike van Keulen; Arnaldo Marín

Recent findings have shown that photosynthesis in the skin of the seed of Posidonia oceanica enhances seedling growth. The seagrass genus Posidonia is found only in two distant parts of the world, the Mediterranean Sea and southern Australia. This fact led us to question whether the acquisition of this novel mechanism in the evolution of this seagrass was a pre-adaptation prior to geological isolation of the Mediterranean from Tethys Sea in the Eocene. Photosynthetic activity in seeds of Australian species of Posidonia is still unknown. This study shows oxygen production and respiration rates, and maximum PSII photochemical efficiency (Fv : Fm) in seeds of two Australian Posidonia species (P. australis and P. sinuosa), and compares these with previous results for P. oceanica. Results showed relatively high oxygen production and respiratory rates in all three species but with significant differences among them, suggesting the existence of an adaptive mechanism to compensate for the relatively high oxygen demands of the seeds. In all cases maximal photochemical efficiency of photosystem II rates reached similar values. The existence of photosynthetic activity in the seeds of all three species implicates that it was an ability probably acquired from a common ancestor during the Late Eocene, when this adaptive strategy could have helped Posidonia species to survive in nutrient-poor temperate seas. This study sheds new light on some aspects of the evolution of marine plants and represents an important contribution to global knowledge of the paleogeographic patterns of seagrass distribution.


Elsevier oceanography series | 2003

EDIOS: European Directory of the Initial Ocean Observing System

Jennifer J. Verduin; Johanne Fischer

EDIOS will be an innovative computerised directory that contains comprehensive infor- mation on all European ocean observing sites and is an initiative of EuroGOOS (European Global Ocean Observing System). EDIOS will constitute a prerequisite for the full implementation of EuroGOOS by allowing for the first time an analysis of the continuously available data for operational models in Europe, and hence the ability to optimise the deployment of instruments, and the design of sampling strategy and devices in routine and repeated operation. This includes technical specification of in situ and remote observing sites and devices such as stations, sections, repeat samples, buoys, platforms; geographical location of the observations; characteristics and frequency of observations; owners of sites and/or devices and data collected; links to data, and a visual user interface to facilitate accessibility of the directory to all categories of potential users.


McMahon, K., Sinclair, E.A. <http://researchrepository.murdoch.edu.au/view/author/Sinclair, Elizabeth.html>, Sherman, C.D.H., van Dijk, K-J, Hernawan, Udhi E., Verduin, Jennifer and Waycott, Michelle (2018) Genetic connectivity in tropical and temperate Australian seagrass species. In: Larkum, A.W.D., Kendrick, G.A. and Ralph, P.J., (eds.) Seagrasses of Australia. Springer, pp. 155-194. | 2018

Genetic connectivity in tropical and temperate Australian seagrass species

Kathryn McMahon; Elizabeth A. Sinclair; Craig D. H. Sherman; Kor-jent van Dijk; Udhi Hernawan; Jennifer J. Verduin; Michelle Waycott

Connectivity among populations influences resilience, genetic diversity , adaptation and speciation, so understanding this process is fundamental for conservation and management. This chapter summarises the main mechanisms of gene flow within and among seagrass meadows, and what we know about the spatial patterns of gene flow around Australia’s coastline. Today a significant body of research on the demographic and genetic connectivity of Australian seagrass meadows has developed. Most studies have focused on the genera Posidonia, Zostera, Heterozostera and Thalassia, in tropical and temperate systems across a range of habitats. These studies have shown overwhelmingly, that sexual reproduction is important for meadow persistence, as in most cases Australian seagrass meadows are genotypically diverse, with moderate to high levels of genotypic diversity. This high diversity could be generated through demographic connectivity, recruitment of individuals sourced from within a meadow, or from dispersal between meadows. Attempts to understand the relative significance of these processes are limited, highlighting a major gap in our understanding. Genetic structure is apparent across a range of spatial scales, from m’s to 100’s to 1000’s km. At local and regional scales, particularly in confined systems such as estuaries and bays, it is not necessarily the dominant oceanographic currents influencing patterns of genetic connectivity, but local eddies, winds and tides. Over larger spatial scales, isolation by distance is consistently significant, with unique genetic clusters spreading over 100s of kilometres. This indicates that regional structure occurs at the limits of long distance dispersal for the species and this is particularly evident where meadows are highly fragmented. The number of genetic studies on Australian seagrasses has increased dramatically recently; however, there are still many opportunities to improve our understanding through focusing on species with different dispersal potentials, more detailed sampling across a range of spatial and temporal scales and combining ecological and modelling approaches.


Estuarine Coastal and Shelf Science | 2000

Dynamics of Plant–Flow Interactions for the Seagrass Amphibolis antarctica: Field Observations and Model Simulations

Jennifer J. Verduin; Jan O. Backhaus


Marine Ecology Progress Series | 1996

In situ submarine pollination in the seagrass Amphibolis antarctica: research notes

Jennifer J. Verduin; D.I. Walker; J. Kuo

Collaboration


Dive into the Jennifer J. Verduin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth A. Sinclair

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Gary A. Kendrick

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siegfried L. Krauss

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan J. Lowe

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge