Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer J. Wernegreen is active.

Publication


Featured researches published by Jennifer J. Wernegreen.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Animals in a bacterial world, a new imperative for the life sciences

Margaret J. McFall-Ngai; Michael G. Hadfield; Thomas C. G. Bosch; Hannah V. Carey; Tomislav Domazet-Lošo; Angela E. Douglas; Nicole Dubilier; Gérard Eberl; Tadashi Fukami; Scott F. Gilbert; Ute Hentschel; Nicole King; Staffan Kjelleberg; Andrew H. Knoll; Natacha Kremer; Sarkis K. Mazmanian; Jessica L. Metcalf; Kenneth H. Nealson; Naomi E. Pierce; John F. Rawls; Ann H. Reid; Edward G. Ruby; Mary E. Rumpho; Jon G. Sanders; Diethard Tautz; Jennifer J. Wernegreen

In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal–bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal–bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.


Nature Reviews Genetics | 2002

Genome evolution in bacterial endosymbionts of insects

Jennifer J. Wernegreen

Many insect species rely on intracellular bacterial symbionts for their viability and fecundity. Large-scale DNA-sequence analyses are revealing the forces that shape the evolution of these bacterial associates and the genetic basis of their specialization to an intracellular lifestyle. The full genome sequences of two obligate mutualists, Buchnera aphidicola of aphids and Wigglesworthia glossinidia of tsetse flies, reveal substantial gene loss and an integration of host and symbiont metabolic functions. Further genomic comparisons should reveal the generality of these features among bacterial mutualists and the extent to which they are shared with other intracellular bacteria, including obligate pathogens.


Trends in Ecology and Evolution | 2000

Lifestyle evolution in symbiotic bacteria: insights from genomics

Nancy A. Moran; Jennifer J. Wernegreen

Bacteria that live only in eukaryotic cells and tissues, including chronic pathogens and mutualistic bacteriocyte associates, often possess a distinctive set of genomic traits, including reduced genome size, biased nucleotide base composition and fast polypeptide evolution. These phylogenetically diverse bacteria have lost certain functional categories of genes, including DNA repair genes, which affect mutational patterns. However, pathogens and mutualistic symbionts retain loci that underlie their unique interaction types, such as genes enabling nutrient provisioning by mutualistic bacteria-inhabiting animals. Recent genomic studies suggest that many of these bacteria are irreversibly specialized, precluding shifts between pathogenesis and mutualism.


Evolution | 2000

COSPECIATION BETWEEN BACTERIAL ENDOSYMBIONTS (BUCHNERA) AND A RECENT RADIATION OF APHIDS (UROLEUCON) AND PITFALLS OF TESTING FOR PHYLOGENETIC CONGRUENCE

Marta A. Clark; Nancy A. Moran; Paul Baumann; Jennifer J. Wernegreen

Abstract.— Previous studies of phylogenetic congruence between aphids and their symbiotic bacteria (Buchnera) supported long‐term vertical transmission of symbionts. However, those studies were based on distantly related aphids and would not have revealed horizontal transfer of symbionts among closely related hosts. Aphid species of the genus Uroleucon are closely related phylogenetically and overlap in geographic ranges, habitats, and parasitoids. To examine support for congruence of phylogenies of Buchnera and Uroleucon, sequences from four mitochondrial, one nuclear, and one endosymbiont gene (trpB) were obtained. Congruence of phylogenies based on pooled aphid genes with phylogenies based on trpB was highly significant: Most nodes resolved by trpB corresponded to nodes resolved by the pooled aphid genes. Furthermore, no nodes were both inconsistent between the trees and strongly supported in both trees. Two kinds of analyses testing the null hypothesis of perfect congruence between pairwise combinations of datasets and tree topologies were performed: the Kishino‐Hasegawa test and the likelihood‐ratio test. Both tests indicated significant disagreement among most pairwise combinations of mitochondrial, nuclear, and symbiont datasets. Because rampant recombination among mitochondrial genomes of different aphid species is unlikely, inaccurate assumptions in the evolutionary models underlying these tests appear to be causing the hypothesis of a shared history to be incorrectly rejected. Moreover, trpB was more consistent with the aphid genes as a set than any single aphid gene was with the others, suggesting that the symbionts show the same phylogeny as the aphids. Overall, analyses support the interpretation that symbionts and aphids have undergone strict cospeciation, with no horizontal transmission of symbionts even among closely related, ecologically similar aphid hosts.


PLOS Pathogens | 2006

The Tripartite Associations between Bacteriophage, Wolbachia, and Arthropods

Seth R. Bordenstein; Michelle L. Marshall; Adam J. Fry; Ulandt Kim; Jennifer J. Wernegreen

By manipulating arthropod reproduction worldwide, the heritable endosymbiont Wolbachia has spread to pandemic levels. Little is known about the microbial basis of cytoplasmic incompatibility (CI) except that bacterial densities and percentages of infected sperm cysts associate with incompatibility strength. The recent discovery of a temperate bacteriophage (WO-B) of Wolbachia containing ankyrin-encoding genes and virulence factors has led to intensifying debate that bacteriophage WO-B induces CI. However, current hypotheses have not considered the separate roles that lytic and lysogenic phage might have on bacterial fitness and phenotype. Here we describe a set of quantitative approaches to characterize phage densities and its associations with bacterial densities and CI. We enumerated genome copy number of phage WO-B and Wolbachia and CI penetrance in supergroup A- and B-infected males of the parasitoid wasp Nasonia vitripennis. We report several findings: (1) variability in CI strength for A-infected males is positively associated with bacterial densities, as expected under the bacterial density model of CI, (2) phage and bacterial densities have a significant inverse association, as expected for an active lytic infection, and (3) CI strength and phage densities are inversely related in A-infected males; similarly, males expressing incomplete CI have significantly higher phage densities than males expressing complete CI. Ultrastructural analyses indicate that approximately 12% of the A Wolbachia have phage particles, and aggregations of these particles can putatively occur outside the Wolbachia cell. Physical interactions were observed between approximately 16% of the Wolbachia cells and spermatid tails. The results support a low to moderate frequency of lytic development in Wolbachia and an overall negative density relationship between bacteriophage and Wolbachia. The findings motivate a novel phage density model of CI in which lytic phage repress Wolbachia densities and therefore reproductive parasitism. We conclude that phage, Wolbachia, and arthropods form a tripartite symbiotic association in which all three are integral to understanding the biology of this widespread endosymbiosis. Clarifying the roles of lytic and lysogenic phage development in Wolbachia biology will effectively structure inquiries into this research topic.


Systematic Biology | 2004

Host-symbiont stability and fast evolutionary rates in an ant-bacterium association : cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia

Patrick H. Degnan; Adam B. Lazarus; Chad D. Brock; Jennifer J. Wernegreen

Bacterial endosymbionts are widespread across several insect orders and are involved in interactions ranging from obligate mutualism to reproductive parasitism. Candidatus Blochmannia gen. nov. (Blochmannia) is an obligate bacterial associate of Camponotus and related ant genera (Hymenoptera: Formicidae). The occurrence of Blochmannia in all Camponotus species sampled from field populations and its maternal transmission to host offspring suggest that this bacterium is engaged in a long-term, stable association with its ant hosts. However, evidence for cospeciation in this system is equivocal because previous phylogenetic studies were based on limited gene sampling, lacked statistical analysis of congruence, and have even suggested host switching. We compared phylogenies of host genes (the nuclear EF-1alphaF2 and mitochondrial COI/II) and Blochmannia genes (16S ribosomal DNA [rDNA], groEL, gidA, and rpsB), totaling more than 7 kilobases for each of 16 Camponotus species. Each data set was analyzed using maximum likelihood and Bayesian phylogenetic reconstruction methods. We found minimal conflict among host and symbiont phylogenies, and the few areas of discordance occurred at deep nodes that were poorly supported by individual data sets. Concatenated protein-coding genes produced a very well-resolved tree that, based on the Shimodaira-Hasegawa test, did not conflict with any host or symbiont data set. Correlated rates of synonymous substitution (d(S)) along corresponding branches of host and symbiont phylogenies further supported the hypothesis of cospeciation. These findings indicate that Blochmannia-Camponotus symbiosis has been evolutionarily stable throughout tens of millions of years. Based on inferred divergence times among the ant hosts, we estimated rates of sequence evolution of Blochmannia to be approximately 0.0024 substitutions per site per million years (s/s/MY) for the 16S rDNA gene and approximately 0.1094 s/s/MY at synonymous positions of the genes sampled. These rates are several-fold higher than those for related bacteria Buchnera aphidicola and Escherichia coli. Phylogenetic congruence among Blochmannia genes indicates genome stability that typifies primary endosymbionts of insects.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2000

Intraspecific phylogenetic congruence among multiple symbiont genomes

Daniel J. Funk; Louise Helbling; Jennifer J. Wernegreen; Nancy A. Moran

Eukaryotes often form intimate endosymbioses with prokaryotic organisms. Cases in which these symbionts are transmitted cytoplasmically to host progeny create the potential for co–speciation or congruent evolution among the distinct genomes of these partners. If symbionts do not move horizontally between different eukaryotic hosts, strict phylogenetic congruence of their genomes is predicted and should extend to relationships within a single host species. Conversely, even rare ‘host shifts’ among closely related lineages should yield conflicting tree topologies at the intraspecific level. Here, we investigate the historical associations among four symbiotic genomes residing within an aphid host: the mitochondrial DNA of Uroleucon ambrosiae aphids, the bacterial chromosome of their Buchnera bacterial endosymbionts, and two plasmids associated with Buchnera. DNA sequence polymorphisms provided a significant phylogenetic signal and no homoplasy for each data set, yielding completely and significantly congruent phylogenies for these four genomes and no evidence of horizontal transmission. This study thus provides the first evidence for strictly vertical transmission and ‘co–speciation’ of symbiotic organisms at the intraspecific level, and represents the lowest phylogenetic level at which such coevolution has been demonstrated. These results may reflect the obligate nature of this intimate mutualism and indicate opportunities for adaptive coevolution among linked symbiont genomes.


Current Microbiology | 2006

Toward a Wolbachia multilocus sequence typing system : Discrimination of Wolbachia strains present in Drosophila species

Charalampos Paraskevopoulos; Seth R. Bordenstein; Jennifer J. Wernegreen; John H. Werren; Kostas Bourtzis

Among the diverse maternally inherited symbionts in arthropods, Wolbachia are the most common and infect over 20% of all species. In a departure from traditional genotyping or phylogenetic methods relying on single Wolbachia genes, the present study represents an initial Multilocus Sequence Typing (MLST) analysis to discriminate closely related Wolbachia pipientis strains, and additional data on sequence diversity in Wolbachia. We report a new phylogenetic characterization of four genes (aspC, atpD, sucB, and pdhB), and provide an expanded analysis of markers described in previous studies (16S rDNA, ftsZ, groEL, dnaA, and gltA). MLST analysis of the bacterial strains present in 16 different Drosophila–Wolbachia associations detected four distinct clonal complexes that also corresponded to maximum-likelihood identified phylogenetic clades. Among the 16 associations analyzed, six could not be assigned to MLST clonal complexes and were also shown to be in conflict with relationships predicted by maximum-likelihood phylogenetic inferences. The results demonstrate the discriminatory power of MLST for identifying strains and clonal lineages of Wolbachia and provide a robust foundation for studying the ecology and evolution of this widespread endosymbiont.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts

Ivica Tamas; Jennifer J. Wernegreen; Björn Nystedt; Seth N. Kauppinen; Alistair C. Darby; Laura Gomez-Valero; Daniel Lundin; Anthony M. Poole; Siv G. E. Andersson

Among host-dependent bacteria that have evolved by extreme reductive genome evolution, long-term bacterial endosymbionts of insects have the smallest (160–790 kb) and most A + T-rich (>70%) bacterial genomes known to date. These genomes are riddled with poly(A) tracts, and 5–50% of genes contain tracts of 10 As or more. Here, we demonstrate transcriptional slippage at poly(A) tracts within genes of Buchnera aphidicola associated with aphids and Blochmannia pennsylvanicus associated with ants. Several tracts contain single frameshift deletions; these apparent pseudogenes showed patterns of constraint consistent with purifying selection on the encoded proteins. Transcriptional slippage yielded a heterogeneous population of transcripts with variable numbers of As in the tract. Across several frameshifted genes, including B. aphidicola cell wall biosynthesis genes and a B. pennsylvanicus histidine biosynthesis gene, 12–50% of transcripts contained corrected reading frames that could potentially yield full-length proteins. In situ immunostaining confirmed the production of the cell wall biosynthetic enzyme UDP-N-acetylmuramyl pentapeptide synthase encoded by the frameshifted murF gene. Simulation studies indicated an overrepresentation of poly(A) tracts in endosymbiont genomes relative to other A + T-rich bacterial genomes. Polymerase infidelity at poly(A) tracts rescues the functionality of genes with frameshift mutations and, conversely, reduces the efficiency of expression for in-frame genes carrying poly(A) regions. These features of homopolymeric tracts could be exploited to manipulate gene expression in small synthetic genomes.


PLOS Biology | 2004

Endosymbiosis: Lessons in Conflict Resolution

Jennifer J. Wernegreen

Endosymbiotic bacteria live within a host species. There are many and diverse examples of such relationships, the study of which provides important lessons for ecology and evolution

Collaboration


Dive into the Jennifer J. Wernegreen's collaboration.

Top Co-Authors

Avatar

Nancy A. Moran

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam B. Lazarus

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam J. Fry

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seth N. Kauppinen

Marine Biological Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge