Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer K. Callaway is active.

Publication


Featured researches published by Jennifer K. Callaway.


Experimental Neurology | 2007

Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration

Nicole Bye; Mark D. Habgood; Jennifer K. Callaway; Nakisa Malakooti; A Potter; Thomas Kossmann; M. Cristina Morganti-Kossmann

Cerebral inflammation and apoptotic cell death are two processes implicated in the progressive tissue damage that occurs following traumatic brain injury (TBI), and strategies to inhibit one or both of these pathways are being investigated as potential therapies for TBI patients. The tetracycline derivative minocycline was therapeutically effective in various models of central nervous system injury and disease, via mechanisms involving suppression of inflammation and apoptosis. We therefore investigated the effect of minocycline in TBI using a closed head injury model. Following TBI, mice were treated with minocycline or vehicle, and the effect on neurological outcome, lesion volume, inflammation and apoptosis was evaluated for up to 7 days. Our results show that while minocycline decreases lesion volume and improves neurological outcome at 1 day post-trauma, this response is not maintained at 4 days. The early beneficial effect is likely not due to anti-apoptotic mechanisms, as the density of apoptotic cells is not affected at either time-point. However, protection by minocycline is associated with a selective anti-inflammatory response, in that microglial activation and interleukin-1beta expression are reduced, while neutrophil infiltration and expression of multiple cytokines are not affected. These findings demonstrate that further studies on minocycline in TBI are necessary in order to consider it as a novel therapy for brain-injured patients.


Journal of Cerebral Blood Flow and Metabolism | 2007

Inflammatory Cell Infiltration after Endothelin-1-Induced Cerebral Ischemia: Histochemical and Myeloperoxidase Correlation with Temporal Changes in Brain Injury

Robert M. Weston; Nicole M. Jones; Bevyn Jarrott; Jennifer K. Callaway

Accumulation of neutrophils in brain after transient focal stroke remains controversial with some studies showing neutrophils to be deleterious, whereas others suggest neutrophils do not contribute to ischemic injury. Myeloperoxidase (MPO) has been used extensively as a marker for quantifying neutrophil accumulation, but is an indirect method and does not detect neutrophils alone. To elucidate the interaction of macrophages in the neutrophil inflammatory response, we conducted double-label immunofluorescence in brain sections at 0, 1, 2, 3, 7, and 15 days after ischemia. Each of these results was obtained from the same animal to determine correlations between neutrophil infiltration and ischemic damage. It was found that MPO activity increased up to 3 days after cerebral ischemia. Dual-staining revealed that macrophages engulf neutrophils in the brain and that this engulfment of neutrophils increased with time, with 50% of neutrophils in the brain engulfed at 3 days and approximately 85% at 15 days (N=5, P < 0.05). Interestingly, at 7 days the amount of dual-staining was decreased to 20% (N=5, P < 0.05). Neutrophil infiltration was positively correlated with ischemic damage in both the cortex and striatum (r2 = 0.86 and 0.80, respectively, P < 0.01). The results of this study indicate that the MPO from neutrophils phagocytized by macrophages may continue to contribute to the overall MPO activity, and that previous assessments that have utilized this marker to measure neutrophil accumulation may have miscalculated the number of neutrophils within the ischemic territory and hence their contribution to the evolution of the infarct at later time points. Thus any biphasic infiltration of neutrophils may have been masked by the accumulation of macrophages.


Stroke | 2009

Angiotensin AT2 Receptor Stimulation Causes Neuroprotection in a Conscious Rat Model of Stroke

Claudia A. McCarthy; Antony Vinh; Jennifer K. Callaway; Robert E. Widdop

Background and Purpose— The angiotensin II type 2 receptor (AT2R) is implicated to be neuroprotective in stroke, although this premise has not been directly tested. Therefore, we have examined the neuroprotective effect of AT2R stimulation after intracerebroventricular administration of AT2R agonist CGP42112 in a conscious rat model of stroke. Methods— Spontaneously hypertensive rats were treated with either CGP42112 (0.1 to 10 ng/kg/min intracerebroventricularly) alone or in combination with the AT2R antagonist PD123319 (36 ng/kg/min intracerebroventricularly) beginning 5 days before stroke induction. A focal reperfusion model of stroke was induced in conscious spontaneously hypertensive rats by administering endothelin-1 to the middle cerebral artery through a surgically implanted cannula. Behavioral tests were used to assess the severity of neurological deficit as a result of the ischemic event. Cortical and striatal infarct volumes were measured 72 hours poststroke. Results— Blood pressure was unaffected by treatments. CGP42112 dose-dependently reduced cortical infarct volume poststroke, and PD123319 abolished the neuroprotective effect of CGP42112. PD123319 had no effect on infarct volume alone. These results were consistent with the behavioral findings, indicating that CGP42112 reduced motor deficit on the ledged beam test at 72 hours poststroke and immunohistochemical analyses showing that CGP42112 increased neuronal survival and minimized the loss of AT2R expression in the infarcted region. Conclusion— Based on infarct, behavioral, and immunohistochemical data, these results indicate that centrally administered CGP42112 exhibits a neuroprotective effect, which was independent of blood pressure. Thus, for the first time, we have shown that central AT2R stimulation is neuroprotective in a conscious rat model of stroke.


Journal of Cell Biology | 2012

Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia

Jason Howitt; Jenny Lackovic; Ley-Hian Low; Adam Naguib; Alison Macintyre; Choo-Peng Goh; Jennifer K. Callaway; Vicki E. Hammond; Tim Thomas; Matthew Dixon; Ulrich Putz; John Silke; Perry F. Bartlett; Baoli Yang; Sharad Kumar; Lloyd C. Trotman; Seong-Seng Tan

PTEN nuclear entry driven by ubiquitination is mediated by the ligase-interacting protein Ndfip1 and is essential for neuronal survival in mice after cerebral ischemia.


Stroke | 1999

Delayed Treatment With AM-36, a Novel Neuroprotective Agent, Reduces Neuronal Damage After Endothelin-1–Induced Middle Cerebral Artery Occlusion in Conscious Rats

Jennifer K. Callaway; Melissa J. Knight; Dianne J. Watkins; Philip M. Beart; Bevyn Jarrott

BACKGROUND AND PURPOSE AM-36 is a novel arylalkylpiperazine with combined antioxidant and Na(+) channel blocking actions. Individually, these properties have been shown to confer neuroprotection in a variety of in vitro and in vivo animal models of stroke. Preliminary studies have shown that AM-36 is neuroprotective in vivo. The purpose of the present study was to assess the neuroprotective and behavioral outcome after delayed administration of AM-36 in an endothelin-1-induced, middle cerebral artery model of cerebral ischemia in conscious rats. METHODS Conscious male hooded Wistar rats were subjected to middle cerebral artery occlusion by perivascular microinjection of endothelin-1 via a previously implanted cannula. AM-36 (6 mg/kg IP) or vehicle was administered intraperitoneally 30, 60, or 180 minutes after middle cerebral artery occlusion. Functional outcome was determined 24, 48, and 72 hours after stroke by neurological deficit score, motor performance, and sensory hemineglect tests. Rats were killed at 72 hours, and infarct area and volume were determined by histology and computerized image analysis. RESULTS Endothelin-1-induced middle cerebral artery occlusion resulted in marked functional deficits and neuronal damage. AM-36 significantly reduced cortical damage when administration was delayed until 30, 60, or 180 minutes after stroke. Interestingly, neuronal damage was time-dependently reduced, with the greatest protection found when AM-36 was administered 180 minutes after stroke. Striatal damage was significantly reduced after treatment with AM-36 at 180 minutes after stroke. Functional outcome paralleled histopathology. Rota-rod performance, sensory hemineglect, and neurological deficit scores returned to preischemia levels in AM-36-treated rats by 72 hours after stroke when administration was delayed by 180 minutes after stroke. CONCLUSIONS AM-36 potently protects against both neuronal damage and functional deficits even when administered up to 180 minutes after induction of stroke. In fact, the greatest protection was found when administration was delayed by 180 minutes after stroke. The possible mechanisms of action of AM-36 are discussed. The present findings suggest that AM-36 may have great promise in the acute treatment of human stroke.


Journal of Pharmacological and Toxicological Methods | 1998

A reliable procedure for comparison of antioxidants in rat brain homogenates

Jennifer K. Callaway; Philip M. Beart; Bevyn Jarrott

Lipid peroxidation is a major consequence of oxidative stress and an important cause of neuronal damage in ischaemic injuries and neurodegenerative disorders such as Parkinsons disease. Recent research has focused on the development of antioxidant drugs which may delay or minimize neurodegeneration. Rapid and reliable assays are therefore necessary in order to evaluate novel antioxidant compounds. A widely adopted method for measurement of lipid peroxidation is the thiobarbituric acid reacting substances (TBARS) assay. Several variations of this method have appeared in the literature, some of which have been tested by us without success. We have therefore established a reliable procedure which takes into account the most important factors previously found to influence the TBARS method. Briefly, various concentrations of drug were added to rat brain homogenates (10% w/v in 20 mM Tris-HCl buffer, pH 7.4) and incubated at 37 degrees C for 10 min before addition of ammonium ferric sulphate (100 or 1000 microM) and a further incubation at 37 degrees C for 30 min. Proteins were then precipitated with 8.1% sodium dodecyl sulphate, the reaction stopped with 20% acetic acid, and the samples were then centrifuged for 15 min. Aliquots of supernatant were added to an equal volume of thiobarbituric acid (0.8%), samples were heated at 95 degrees C for 30 min, and then cooled on ice before reading at 532 nm. The present adaptation represents a simple and highly reproducible assay which does not require difficult extraction procedures with hazardous chemicals and results in a stable chromagen. The method has been evaluated using a number of structurally distinct antioxidants and iron chelators. IC50 values (microM) for percentage inhibition of TBARS formation were as follows: desferroxamine (1.1), U83836E (1.7), butylated hydroxytoluene (13), U74500A (20), LY231617 (22), idebenone (89), and Trolox (110). This order of potency was comparable to that found with a commercially available, but expensive kit designed to specifically measure malondialdehyde (Spearmans rank correlation coefficient, p < 0.01).


Neurochemistry International | 2006

Effects of lipopolysaccharide on glial phenotype and activity of glutamate transporters: Evidence for delayed up-regulation and redistribution of GLT-1.

Ross D. O'Shea; Chew L. Lau; Mark C. Farso; Shanti Diwakarla; Chrissandra J. Zagami; Brian B. Svendsen; Sandra J. Feeney; Jennifer K. Callaway; Nicole M. Jones; David V. Pow; Niels C. Danbolt; Bevyn Jarrott; Philip M. Beart

Excitatory amino acid transporters (EAATs) are responsible for homeostasis of extracellular L-glutamate, and the glial transporters are functionally dominant. EAAT expression or function is altered in acute and chronic neurological conditions, but little is known about the regulation of EAATs in reactive astroglia found in such neuropathologies. These studies examined the effects of the bacterial endotoxin lipopolysaccharide (LPS) on glial EAATs in vitro. The effects of LPS (1 microg/ml, 24-72 h) on EAAT activity and expression were examined in primary cultures of mouse astrocytes. [(3)H]D-aspartate uptake increased to 129% of control by 72 h treatment with LPS. Saturation analysis revealed that apparent K(m) was unchanged whilst V(max) was significantly increased to 172% of control by 72 h LPS treatment. Biotinylation and Western blotting indicated that cell-surface expression of GLT-1 was significantly elevated (146% control) by LPS treatment whereas GLAST expression was unchanged. Confocal analyses revealed that LPS treatment resulted in cytoskeletal changes and stellation of astrocytes, with rearrangement of F-actin (as shown by phalloidin labelling). Immunocytochemistry revealed clustering of GLAST, and increased expression and redistribution of GLT-1 to the cell-surface following treatment with LPS. Similar experiments were conducted in microglia, where LPS (50 ng/ml) was found to up-regulate expression of GLT-1 at 24 and 72 h in concert with cytoskeletal changes accompanying activation. These findings suggest an association of cytoskeletal changes in glia with EAAT activity, with the predominant adaptation involving up-regulation and redistribution of GLT-1.


PLOS ONE | 2010

Spatio-Temporal Progression of Grey and White Matter Damage Following Contusion Injury in Rat Spinal Cord

C. Joakim Ek; Mark D. Habgood; Jennifer K. Callaway; Ross Dennis; Katarzyna M. Dziegielewska; Pia A. Johansson; A Potter; Benjamin J. Wheaton; Norman R. Saunders

Cellular mechanisms of secondary damage progression following spinal cord injury remain unclear. We have studied the extent of tissue damage from 15 min to 10 weeks after injury using morphological and biochemical estimates of lesion volume and surviving grey and white matter. This has been achieved by semi-quantitative immunocytochemical methods for a range of cellular markers, quantitative counts of white matter axonal profiles in semi-thin sections and semi-quantitative Western blot analysis, together with behavioural tests (BBB scores, ledged beam, random rung horizontal ladder and DigiGait™ analysis). We have developed a new computer-controlled electronic impactor based on a linear motor that allows specification of the precise nature, extent and timing of the impact. Initial (15 min) lesion volumes showed very low variance (1.92±0.23 mm3, mean±SD, n = 5). Although substantial tissue clearance continued for weeks after injury, loss of grey matter was rapid and complete by 24 hours, whereas loss of white matter extended up to one week. No change was found between one and 10 weeks after injury for almost all morphological and biochemical estimates of lesion size or behavioural methods. These results suggest that previously reported apparent ongoing injury progression is likely to be due, to a large extent, to clearance of tissue damaged by the primary impact rather than continuing cell death. The low variance of the impactor and the comprehensive assessment methods described in this paper provide an improved basis on which the effects of potential treatment regimes for spinal cord injury can be assessed.


PLOS ONE | 2014

Direct Angiotensin AT2 Receptor Stimulation Using a Novel AT2 Receptor Agonist, Compound 21, Evokes Neuroprotection in Conscious Hypertensive Rats

Claudia A. McCarthy; Antony Vinh; Alyson A. Miller; Anders Hallberg; Mathias Alterman; Jennifer K. Callaway; Robert E. Widdop

Background In this study, the neuroprotective effect of a novel nonpeptide AT2R agonist, C21, was examined in a conscious model of stroke to verify a class effect of AT2R agonists as neuroprotective agents. Methods and Results Spontaneously hypertensive rats (SHR) were pre-treated for 5 days prior to stroke with C21 alone or in combination with the AT2R antagonist PD123319. In a separate series of experiments C21 was administered in a series of 4 doses commencing 6 hours after stroke. A focal reperfusion model of ischemia was induced in conscious SHR by administering endothelin-1 to the middle cerebral artery (MCA). Motor coordination was assessed at 1 and 3 days after stroke and post mortem analyses of infarct volumes, microglia activation and neuronal survival were performed at 72 hours post MCA occlusion. When given prior to stroke, C21 dose dependently decreased infarct volume, which is consistent with the behavioural findings illustrating an improvement in motor deficit. During the pre-treatment protocol C21 was shown to enhance microglia activation, which are likely to be evoking protection by releasing brain derived neurotrophic factor. When drug administration was delayed until 6 hours after stroke, C21 still reduced brain injury. Conclusion These results indicate that centrally administered C21 confers neuroprotection against stroke damage. This benefit is likely to involve various mechanisms, including microglial activation of endogenous repair and enhanced cerebroperfusion. Thus, we have confirmed the neuroprotective effect of AT2R stimulation using a nonpeptide compound which highlights the clinical potential of the AT2R agonists for future development.


Hypertension | 2012

Angiotensin II Type 2 Receptor Stimulation Initiated After Stroke Causes Neuroprotection in Conscious Rats

Claudia A. McCarthy; Antony Vinh; Bradley Rs Broughton; Christopher G. Sobey; Jennifer K. Callaway; Robert E. Widdop

We have demonstrated previously that pretreatment with an angiotensin II type 2 receptor (AT2R) agonist is neuroprotective against a subsequent stroke independent of any changes in blood pressure. Therefore, in the current study, we have examined the potential neuroprotective effect of AT2R stimulation initiated after stroke induction to mimic the clinical setting. Intracerebroventricular administration of the AT2R agonist CGP42112 was commenced 6 hours after an ischemic stroke had been induced in conscious spontaneously hypertensive rats. CGP42112 given over 4 doses in the same rats (3 µg/kg per dose centrally) at 6, 24, 48, and 72 hours after stroke induction reduced total infarct volume (32±13 mm3 versus vehicle, 170±49 mm3; P<0.05) and improved motor function. Furthermore, we have demonstrated that AT2R stimulation after stroke increased neuronal survival, decreased apoptosis, and caused an increase in the number of activated microglia in the core region of damage. The effects of CGP42112 were partially reversed with the coadministration of an AT2R antagonist, PD123319. Thus, the current study has shown for the first time that delayed central AT2R stimulation after a cerebral incident is neuroprotective in a conscious rat model of stroke.

Collaboration


Dive into the Jennifer K. Callaway's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip M. Beart

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Royse

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole M. Jones

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge