Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer L. DuBois is active.

Publication


Featured researches published by Jennifer L. DuBois.


Journal of Biological Chemistry | 2013

The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA flavin-containing monooxygenase

Xinhua Dai; Kiyoshi Mashiguchi; Qingguo Chen; Hiroyuki Kasahara; Yuji Kamiya; Sunil Ojha; Jennifer L. DuBois; David P. Ballou; Yunde Zhao

Background: Auxin is essential for plant growth, but its biosynthesis in plants has not been biochemically defined. Results: Key features of the catalytic mechanism for the YUCCA flavoprotein, the rate-limiting enzyme of auxin biosynthesis, are determined. Conclusion: YUCs generate an observable though relatively short lived C4a-(hydro)peroxyflavin intermediate for catalysis in auxin biosynthesis. Significance: This work establishes the previously unknown biochemical mechanism of auxin biosynthesis. Auxin regulates every aspect of plant growth and development. Previous genetic studies demonstrated that YUCCA (YUC) flavin-containing monooxygenases (FMOs) catalyze a rate-limiting step in auxin biosynthesis and that YUCs are essential for many developmental processes. We proposed that YUCs convert indole-3-pyruvate (IPA) to indole-3-acetate (IAA). However, the exact biochemical mechanism of YUCs has remained elusive. Here we present the biochemical characterization of recombinant Arabidopsis YUC6. Expressed in and purified from Escherichia coli, YUC6 contains FAD as a cofactor, which has peaks at 448 nm and 376 nm in the UV-visible spectrum. We show that YUC6 uses NADPH and oxygen to convert IPA to IAA. The first step of the YUC6-catalyzed reaction is the reduction of the FAD cofactor to FADH− by NADPH. Subsequently, FADH− reacts with oxygen to form a flavin-C4a-(hydro)peroxy intermediate, which we show has a maximum absorbance at 381 nm in its UV-visible spectrum. The final chemical step is the reaction of the C4a-intermediate with IPA to produce IAA. Although the sequences of the YUC enzymes are related to those of the mammalian FMOs, which oxygenate nucleophilic substrates, YUC6 oxygenates an electrophilic substrate (IPA). Nevertheless, both classes of enzymes form quasi-stable C4a-(hydro)peroxyl FAD intermediates. The YUC6 intermediate has a half-life of ∼20 s whereas that of some FMOs is >30 min. This work reveals the catalytic mechanism of the first known plant flavin monooxygenase and provides a foundation for further investigating how YUC activities are regulated in plants.


Biochemistry | 2008

Chemical and Steady-State Kinetic Analyses of a Heterologously Expressed Heme Dependent Chlorite Dismutase†

Bennett R. Streit; Jennifer L. DuBois

Chlorite dismutase carries out the heme-catalyzed decomposition of ClO2- to Cl- and O2, an unusual transformation with biotechnological and bioremediative applications. The enzyme has been successfully overexpressed for the first time in highly functional form in Escherichia coli and its steady state kinetics studied. The purified enzyme is abundant (55 mg/L cell culture), highly active (approximately 4.7 x 10(3) micromol of ClO2- min(-1) mg(-1) subunit) and nearly stoichiometric in heme; further, it shares spectroscopic and physicochemical features with chlorite dismutases previously isolated from three organisms. A careful study of the enzymes steady state kinetics has been carried out. ClO2- consumption and O2 release rates were measured, yielding comparable values of kcat (4.5 x 10(5) min(-1)), K(m) (approximately 215 microM), and kcat/Km (3.5 x 10(7) M(-1) s(-1) via either method (4 degrees C, pH 6.8; all values referenced per heme-containing subunit). ClO2-:O2 stoichiometry exhibited a 1:1 relationship under all conditions measured. Though the value of kcat/Km indicates near diffusion control of the reaction, viscosogens had no effect on k(cat)/K(m) or V(max). The product O2 did not inhibit the reaction at saturating [O2], but Cl- is a mixed inhibitor with relatively high values of KI (225 mM for enzyme and 95.6 mM for the enzyme-substrate complex), indicating a relatively low affinity of the heme iron for halogen ions. Chlorite irreversibly inactivates the enzyme after approximately 1.7 x 10(4) turnovers (per heme) and with a half-life of 0.39 min, resulting in bleaching of the heme chromophore. The inactivation K(I) (K(inact)) of 166 microM is similar in magnitude to Km, consistent with a common Michaelis complex on the pathway to both reaction and inactivation. The one-electron peroxidase substrate guaiacol offers incomplete protection of the enzyme from inactivation. Mechanisms in keeping with the available data and the properties of other well-described heme enzymes are proposed.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Mechanism of and exquisite selectivity for O–O bond formation by the heme-dependent chlorite dismutase

Amanda Q. Lee; Bennett R. Streit; Michael J. Zdilla; Mahdi M. Abu-Omar; Jennifer L. DuBois

Chlorite dismutase (Cld) is a heme b-dependent, O–O bond forming enzyme that transforms toxic chlorite (ClO2−) into innocuous chloride and molecular oxygen. The mechanism and specificity of the reaction with chlorite and alternate oxidants were investigated. Chlorite is the sole source of dioxygen as determined by oxygen-18 labeling studies. Based on ion chromatography and mass spectrometry results, Cld is highly specific for the dismutation of chlorite to chloride and dioxygen with no other side products. Cld does not use chlorite as an oxidant for oxygen atom transfer and halogenation reactions (using cosubstrates guaiacol, thioanisole, and monochlorodimedone, respectively). When peracetic acid or H2O2 was used as an alternative oxidant, oxidation and oxygen atom transfer but not halogenation reactions occurred. Monitoring the reaction of Cld with peracetic acid by rapid-mixing UV-visible spectroscopy, the formation of the high valent compound I intermediate, [(Por•+)FeIV = O], was observed [k1 = (1.28 ± 0.04) × 106 M−1 s−1]. Compound I readily decayed to form compound II in a manner that is independent of peracetic acid concentration (k2 = 170 ± 20 s−1). Both compound I and a compound II-associated tryptophanyl radical that resembles cytochrome c peroxidase (Ccp) compound I were observed by EPR under freeze-quench conditions. The data collectively suggest an O–O bond-forming mechanism involving generation of a compound I intermediate via oxygen atom transfer from chlorite, and subsequent recombination of the resulting hypochlorite and compound I.


Journal of the American Chemical Society | 2010

How Active-Site Protonation State Influences the Reactivity and Ligation of the Heme in Chlorite Dismutase

Bennett R. Streit; Béatrice Blanc; Gudrun S. Lukat-Rodgers; Kenton R. Rodgers; Jennifer L. DuBois

Chlorite dismutase catalyzes O(2) release from chlorite with exquisite efficiency and specificity. The spectroscopic properties, ligand binding affinities, and steady-state kinetics of chlorite dismutase from Dechloromonas aromatica were examined over pH 3-11.5 to gain insight into how the protonation state of the heme environment influences dioxygen formation. An acid-base transition was observed by UV/visible and resonance Raman (rR) spectroscopy with a pK(a) of 8.7, 2-3 pH units below analogous transitions observed in typical His-ligated peroxidases. This transition marks the conversion of a five-coordinate high-spin Fe(III) to a mixed high/low-spin ferric hydroxide, as confirmed by rR spectroscopy. The two Fe-OH stretching frequencies are quite low, consistent with a weak Fe-OH bond, despite the nearly neutral imidazole side chain of the proximal histidine ligand. The hydroxide is proposed to interact strongly with a distal H-bond donor, thereby weakening the Fe-OH bond. The rR spectra of Cld-CO as a function of pH reveal two forms of the complex, one in which there is minimal interaction of distal residues with the carbonyl oxygen and another, acidic form in which the oxygen is under the influence of positive charge. Recent crystallographic data reveal arginine 183 as the lone H-bond-donating residue in the distal pocket. It is likely that this Arg is the strong, positively charged H-bond donor implicated by vibrational data to interact with exogenous axial heme ligands. The same Arg in its neutral (pK(a) approximately 6.5) form also appears to act as the active-site base in binding reactions of protonated ligands, such as HCN, to ferric Cld. The steady-state profile for the rate of chlorite decomposition is characterized by these same pK(a) values. The five-coordinate high-spin acidic Cld is more active than the alkaline hydroxide-bound form. The acid form decomposes chlorite most efficiently when the distal Arg is protonated/cationic (maximum k(cat) = 2.0(+/-0.6) x 10(5) s(-1), k(cat)/K(M) = 3.2(+/-0.4) x 10(7) M(-1) s(-1), pH 5.2, 4 degrees C) and to a somewhat lesser extent when it acts as a H-bond donor to the axial hydroxide ligand under alkaline conditions.


Journal of the American Chemical Society | 2008

Iron Complexes of Dendrimer-Appended Carboxylates for Activating Dioxygen and Oxidizing Hydrocarbons

Min Zhao; Brett A. Helms; Elena Slonkina; Simone Friedle; Dongwhan Lee; Jennifer L. DuBois; Britt Hedman; Keith O. Hodgson; Jean M. J. Fréchet; Stephen J. Lippard

The active sites of metalloenzymes are often deeply buried inside a hydrophobic protein sheath, which protects them from undesirable hydrolysis and polymerization reactions, allowing them to achieve their normal functions. In order to mimic the hydrophobic environment of the active sites in bacterial monooxygenases, diiron(II) compounds of the general formula [Fe2([G-3]COO)4(4-RPy)2] were prepared, where [G-3]COO- is a third-generation dendrimer-appended terphenyl carboxylate ligand and 4-RPy is a pyridine derivative. The dendrimer environment provides excellent protection for the diiron center, reducing its reactivity toward dioxygen by about 300-fold compared with analogous complexes of terphenyl carboxylate ([G-1]COO-) ligands. An FeIIFeIII intermediate was characterized by electronic, electron paramagnetic resonance, Mössbauer, and X-ray absorption spectroscopic analyses following the oxygenation of [Fe2([G-3]COO)4(4-PPy)2], where 4-PPy is 4-pyrrolidinopyridine. The results are consistent with the formation of a superoxo species. This diiron compound, in the presence of dioxygen, can oxidize external substrates.


Angewandte Chemie | 2001

A Short Copper–Copper Distance in a (μ‐1,2‐Peroxo)dicopper(II) Complex Having a 1,8‐Naphthyridine Unit as an Additional Bridge

Chuan He; Jennifer L. DuBois; Britt Hedman; Keith O. Hodgson; Stephen J. Lippard

A copper-copper separation of about 2.84 Å is determined by extended X-ray absorption fine structure studies for the (μ-1,2-peroxo)dicopper(II) species 1, which has only a 1,8-naphthyridine unit as an additional bridge. Complex 1 was prepared by the reaction of O2 with a dicopper(I) complex formed from BPMAN.


Journal of Biological Chemistry | 2013

The Chlorite Dismutase (HemQ) from Staphylococcus aureus Has a Redox-sensitive Heme and Is Associated with the Small Colony Variant Phenotype

Jeffrey A. Mayfield; Neal D. Hammer; Richard C. Kurker; Thomas K. Chen; Sunil Ojha; Eric P. Skaar; Jennifer L. DuBois

Background: The contribution of chlorite dismutases to heme metabolism is not well characterized. Results: Inactivation of cld/hemQ makes S. aureus a heme auxotroph and SCV. HemQ is inactivated via its redox-sensitive heme. Conclusion: HemQ may have a regulatory role controlling heme biosynthesis in response to redox or other stresses. Significance: HemQ proteins may regulate heme biosynthesis and/or cell growth in many Gram-positive organisms. The chlorite dismutases (C-family proteins) are a widespread family of heme-binding proteins for which chemical and biological roles remain unclear. An association of the gene with heme biosynthesis in Gram-positive bacteria was previously demonstrated by experiments involving introduction of genes from two Gram-positive species into heme biosynthesis mutant strains of Escherichia coli, leading to the gene being renamed hemQ. To assess the gene products biological role more directly, a Staphylococcus aureus strain with an inactivated hemQ gene was generated and shown to be a slow growing small colony variant under aerobic but not anaerobic conditions. The small colony variant phenotype is rescued by the addition of exogenous heme despite an otherwise wild type heme biosynthetic pathway. The ΔhemQ mutant accumulates coproporphyrin specifically under aerobic conditions. Although its sequence is highly similar to functional chlorite dismutases, the HemQ protein has no steady state reactivity with chlorite, very modest reactivity with H2O2 or peracetic acid, and no observable transient intermediates. HemQs equilibrium affinity for heme is in the low micromolar range. Holo-HemQ reconstituted with heme exhibits heme lysis after <50 turnovers with peroxide and <10 turnovers with chlorite. The heme-free apoprotein aggregates or unfolds over time. IsdG-like proteins and antibiotic biosynthesis monooxygenases are close sequence and structural relatives of HemQ that use heme or porphyrin-like organic molecules as substrates. The genetic and biochemical data suggest a similar substrate role for heme or porphyrin, with possible sensor-regulator functions for the protein. HemQ heme could serve as the means by which S. aureus reversibly adopts an SCV phenotype in response to redox stress.


Biochemistry | 2012

Understanding How the Distal Environment Directs Reactivity in Chlorite Dismutase: Spectroscopy and Reactivity of Arg183 Mutants

Béatrice Blanc; Jeffery A. Mayfield; Claudia A. McDonald; Gudrun S. Lukat-Rodgers; Kenton R. Rodgers; Jennifer L. DuBois

The chlorite dismutase from Dechloromonas aromatica (DaCld) catalyzes the highly efficient decomposition of chlorite to O(2) and chloride. Spectroscopic, equilibrium thermodynamic, and kinetic measurements have indicated that Cld has two pH sensitive moieties; one is the heme, and Arg183 in the distal heme pocket has been hypothesized to be the second. This active site residue has been examined by site-directed mutagenesis to understand the roles of positive charge and hydrogen bonding in O-O bond formation. Three Cld mutants, Arg183 to Lys (R183K), Arg183 to Gln (R183Q), and Arg183 to Ala (R183A), were investigated to determine their respective contributions to the decomposition of chlorite ion, the spin state and coordination states of their ferric and ferrous forms, their cyanide and imidazole binding affinities, and their reduction potentials. UV-visible and resonance Raman spectroscopies showed that DaCld(R183A) contains five-coordinate high-spin (5cHS) heme, the DaCld(R183Q) heme is a mixture of five-coordinate and six-coordinate high spin (5c/6cHS) heme, and DaCld(R183K) contains six-coordinate low-spin (6cLS) heme. In contrast to wild-type (WT) Cld, which exhibits pK(a) values of 6.5 and 8.7, all three ferric mutants exhibited pH-independent spectroscopic signatures and kinetic behaviors. Steady state kinetic parameters of the chlorite decomposition reaction catalyzed by the mutants suggest that in WT DaCld the pK(a) of 6.5 corresponds to a change in the availability of positive charge from the guanidinium group of Arg183 to the heme site. This could be due to either direct acid-base chemistry at the Arg183 side chain or a flexible Arg183 side chain that can access various orientations. Current evidence is most consistent with a conformational adjustment of Arg183. A properly oriented Arg183 is critical for the stabilization of anions in the distal pocket and for efficient catalysis.


Molecular BioSystems | 2013

A multi-omic systems approach to elucidating Yersinia virulence mechanisms

Charles Ansong; Alexandra C. Schrimpe-Rutledge; Hugh D. Mitchell; Sadhana Chauhan; Marcus B. Jones; Young Mo Kim; Brooke L. Deatherage Kaiser; Jennifer L. DuBois; Heather M. Brewer; Bryan Frank; Jason E. McDermott; Thomas O. Metz; Scott N. Peterson; Richard D. Smith; Vladimir L. Motin; Joshua N. Adkins

The underlying mechanisms that lead to dramatic differences between closely related pathogens are not always readily apparent. For example, the genomes of Yersinia pestis (YP) the causative agent of plague with a high mortality rate and Yersinia pseudotuberculosis (YPT) an enteric pathogen with a modest mortality rate are highly similar with some species specific differences; however the molecular causes of their distinct clinical outcomes remain poorly understood. In this study, a temporal multi-omic analysis of YP and YPT at physiologically relevant temperatures was performed to gain insights into how an acute and highly lethal bacterial pathogen, YP, differs from its less virulent progenitor, YPT. This analysis revealed higher gene and protein expression levels of conserved major virulence factors in YP relative to YPT, including the Yop virulon and the pH6 antigen. This suggests that adaptation in the regulatory architecture, in addition to the presence of unique genetic material, may contribute to the increased pathogenecity of YP relative to YPT. Additionally, global transcriptome and proteome responses of YP and YPT revealed conserved post-transcriptional control of metabolism and the translational machinery including the modulation of glutamate levels in Yersiniae. Finally, the omics data was coupled with a computational network analysis, allowing an efficient prediction of novel Yersinia virulence factors based on gene and protein expression patterns.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Activation of heme biosynthesis by a small molecule that is toxic to fermenting Staphylococcus aureus

Laura A. Mike; Brendan F. Dutter; Devin L. Stauff; Jessica L. Moore; Nicholas P. Vitko; Olusegun O. Aranmolate; Thomas E. Kehl-Fie; Sarah A. Sullivan; Paul R Reid; Jennifer L. DuBois; Anthony R. Richardson; Richard M. Caprioli; Gary A. Sulikowski; Eric P. Skaar

Staphylococcus aureus is a significant infectious threat to global public health. Acquisition or synthesis of heme is required for S. aureus to capture energy through respiration, but an excess of this critical cofactor is toxic to bacteria. S. aureus employs the heme sensor system (HssRS) to overcome heme toxicity; however, the mechanism of heme sensing is not defined. Here, we describe the identification of a small molecule activator of HssRS that induces endogenous heme biosynthesis by perturbing central metabolism. This molecule is toxic to fermenting S. aureus, including clinically relevant small colony variants. The utility of targeting fermenting bacteria is exemplified by the fact that this compound prevents the emergence of antibiotic resistance, enhances phagocyte killing, and reduces S. aureus pathogenesis. Not only is this small molecule a powerful tool for studying bacterial heme biosynthesis and central metabolism; it also establishes targeting of fermentation as a viable antibacterial strategy.

Collaboration


Dive into the Jennifer L. DuBois's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenton R. Rodgers

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Britt Hedman

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric P. Skaar

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

John W. Peters

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge