Jennifer L. Flury
University of Cincinnati Academic Health Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer L. Flury.
Journal of Immunology | 2010
Gregory T. Motz; Bryan L. Eppert; Brian W. Wortham; Robyn M. Amos-Kroohs; Jennifer L. Flury; Scott C. Wesselkamper; Michael T. Borchers
Chronic obstructive pulmonary disease (COPD) is a debilitating, progressive lung disease punctuated by exacerbations of symptoms. COPD exacerbations are most often associated with viral infections, and exposure to cigarette smoke (CS) followed by viral infection has been shown experimentally to enhance lung inflammation, tissue destruction, and airway fibrosis. Despite this, however, the cellular mechanisms responsible for this effect are unknown. In this study, we examined NK cell function in a mouse model of COPD given the vital role of NK cells following viral infection. Ex vivo stimulation of lung leukocytes with poly(I:C), ssRNA40, or ODN1826 enhanced production of NK cell-derived IFN-γ in CS-exposed mice. NK cells from CS-exposed mice exhibited a novel form of priming; highly purified NK cells from CS-exposed mice, relative to NK cells from filtered air-exposed mice, produced more IFN-γ following stimulation with IL-12, IL-18, or both. Further, NK cell priming was lost following smoking cessation. NKG2D stimulation through overexpression of Raet1 on the lung epithelium primed NK cell responsiveness to poly(I:C), ssRNA40, or ODN1826 stimulation, but not cytokine stimulation. In addition, NK cells from CS-exposed mice expressed more cell surface CD107a upon stimulation, demonstrating that the NK cell degranulation response was also primed. Together, these results reveal a novel mechanism of activation of the innate immune system and highlight NK cells as important cellular targets in controlling COPD exacerbations.
Journal of Immunology | 2012
Brian W. Wortham; Bryan L. Eppert; Gt Motz; Jennifer L. Flury; Mauricio Orozco-Levi; Kasper Hoebe; Ralph J. Panos; Melissa D. Maxfield; Stephan W. Glasser; Albert P. Senft; David H. Raulet; Michael T. Borchers
Chronic obstructive pulmonary disease (COPD) is characterized by peribronchial and perivascular inflammation and largely irreversible airflow obstruction. Acute disease exacerbations, due frequently to viral infections, lead to enhanced disease symptoms and contribute to long-term progression of COPD pathology. Previously, we demonstrated that NK cells from cigarette smoke (CS)-exposed mice exhibit enhanced effector functions in response to stimulating cytokines or TLR ligands. In this article, we show that the activating receptor NKG2D is a key mediator for CS-stimulated NK cell hyperresponsiveness, because CS-exposed NKG2D-deficient mice (Klrk1−/−) did not exhibit enhanced effector functions as assessed by cytokine responsiveness. NK cell cytotoxicity against MHC class I-deficient targets was not affected in a COPD model. However, NK cells from CS-exposed mice exhibit greater cytotoxic activity toward cells that express the NKG2D ligand RAET1ε. We also demonstrate that NKG2D-deficient mice exhibit diminished airway damage and reduced inflammation in a model of viral COPD exacerbation, which do not affect viral clearance. Furthermore, adoptive transfer of NKG2D+ NK cells into CS-exposed, influenza-infected NKG2D-deficient mice recapitulated the phenotypes observed in CS-exposed, influenza-infected wild-type mice. Our findings indicate that NKG2D stimulation during long-term CS exposure is a central pathway in the development of NK cell hyperresponsiveness and influenza-mediated exacerbations of COPD.
Journal of Immunology | 2013
Bryan L. Eppert; Brian W. Wortham; Jennifer L. Flury; Michael T. Borchers
Cigarette smoke (CS) exposure is the primary risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic peribronchial, perivascular, and alveolar inflammation. The inflammatory cells consist primarily of macrophage, neutrophils, and lymphocytes. Although myeloid cells are well studied, the role of lymphocyte populations in pathogenesis of COPD remains unclear. Using a mouse model of CS-induced emphysema, our laboratory has previously demonstrated that CS exposure causes changes in the TCR repertoire suggestive of an Ag-specific response and triggers a pathogenic T cell response sufficient to cause alveolar destruction and inflammation. We extend these findings to demonstrate that T cells from CS-exposed mice of the BALB/cJ or C57B6 strain are sufficient to transfer pulmonary pathology to CS-naive, immunosufficient mice. CS exposure causes a proinflammatory phenotype among pulmonary T cells consistent with those from COPD patients. We provide evidence that donor T cells from CS-exposed mice depend on Ag recognition to transfer alveolar destruction using MHC class I–deficient recipient mice. Neither CD4+ nor CD8+ T cells from donor mice exposed to CS alone are sufficient to cause inflammation or pathology in recipient mice. We found no evidence of impaired suppression of T cell proliferation among regulatory T cells from CS-exposed mice. These results suggest that CS exposure initiates an Ag-specific response that leads to pulmonary destruction and inflammation that involves both CD8+ and CD4+ T cells. These results are direct evidence for an autoimmune response initiated by CS exposure.
Infection and Immunity | 2010
Bryan L. Eppert; Gregory T. Motz; Brian W. Wortham; Jennifer L. Flury; Michael T. Borchers
ABSTRACT CCR7 is a chemokine receptor expressed on the surfaces of T cells, B cells, and mature dendritic cells that controls cell migration in response to the cognate ligands CCL19 and CCL21. CCR7 is critical for the generation of an adaptive T cell response. However, the roles of CCR7 in the host defense against pulmonary infection and innate immunity are not well understood. We investigated the role of CCR7 in the host defense against acute pulmonary infection with Pseudomonas aeruginosa. We intranasally infected C57BL/6 mice with P. aeruginosa and characterized the expression of CCR7 ligands and the surface expression of CCR7 on pulmonary leukocytes. In response to infection, expression of CCL19 and expression of CCL21 were oppositely regulated, and myeloid dendritic cells upregulated CCR7 expression. We further examined the effects of CCR7 deficiency on the inflammatory response to P. aeruginosa infection. We infected Ccr7−/− and wild-type mice with P. aeruginosa and characterized the accumulation of pulmonary leukocytes, production of proinflammatory mediators, neutrophil activation, and bacterial clearance. CCR7 deficiency led to an accumulation of myeloid dendritic cells and T cells in the lung in response to infection. CCR7 deficiency resulted in higher expression of CD80 and CD86 on dendritic cells; increased production of interleukin-12/23p40 (IL-12/23p40), gamma interferon (IFN-γ), and IL-1α; increased neutrophil respiratory burst; and, ultimately, increased clearance of acute P. aeruginosa infection. In conclusion, our results suggest that CCR7 deficiency results in a heightened proinflammatory environment in response to acute pulmonary P. aeruginosa infection and contributes to more efficient clearance.
PLOS ONE | 2013
Brian W. Wortham; Bryan L. Eppert; Jennifer L. Flury; Sara Morgado Garcia; Michael T. Borchers
Long-term exposure to cigarette smoke (CS) can have deleterious effects on lung epithelial cells including cell death and the initiation of inflammatory responses. CS-induced cell injury can elaborate cell surface signals and cellular byproducts that stimulate immune system surveillance. Our previous work has shown that the expression of ligands for the cytotoxic lymphocyte activating receptor NKG2D is enhanced in patients with COPD and that the induction of these ligands in a mouse model can replicate COPD pathologies. Here, we extend these findings to demonstrate a role for the NKG2D receptor in CS-induced pathophysiology and provide evidence linking nucleic acid-sensing endosomal toll-like receptor (TLR) signaling to COPD pathology through NKG2D activation. Specifically, we show that mice deficient in NKG2D exhibit attenuated pulmonary inflammation and airspace enlargement in a model of CS-induced emphysema. Additionally, we show that CS exposure induces the release of free nucleic acids in the bronchoalveolar lavage and that direct exposure of mouse lung epithelial cells to cigarette smoke extract similarly induces functional nucleic acids as assessed by TLR3, 7, and 9 reporter cell lines. We demonstrate that exposure of mouse lung epithelial cells to TLR ligands stimulates the surface expression of RAET1, a ligand for NKG2D, and that mice deficient in TLR3/7/9 receptor signaling do not exhibit CS-induced NK cell hyperresponsiveness and airspace enlargement. The findings indicate that CS-induced airway injury stimulates TLR signaling by endogenous nucleic acids leading to elevated NKG2D ligand expression. Activation of these pathways plays a major role in the altered NK cell function, pulmonary inflammation and remodeling related to long-term CS exposure.
Journal of Immunology | 2016
Brian W. Wortham; Bryan L. Eppert; Jennifer L. Flury; Sara Morgado Garcia; Walter R.F. Donica; Andrew Osterburg; Barbara Joyce-Shaikh; Daniel J. Cua; Michael T. Borchers
Chronic obstructive pulmonary disease (COPD) is a devastating disease with no effective therapies. We investigated the role of the C-type lectin receptor, CLEC5A, in macrophage activation and pulmonary pathogenesis in a mouse model of COPD. We demonstrate that CLEC5A is expressed on alveolar macrophages in mice exposed long-term to cigarette smoke (CS), as well as in human smokers. We also show that CLEC5A-mediated activation of macrophages enhanced cytokine elaboration alone, as well as in combination with LPS or GM-CSF in CS-exposed mice. Furthermore, using Clec5a-deficient mice, we demonstrate that CS-induced macrophage responsiveness is mediated by CLEC5A, and CLEC5A is required for the development of inflammation, proinflammatory cytokine expression, and airspace enlargement. These findings suggest a novel mechanism that promotes airway inflammation and pathologies in response to CS exposure and identifies CLEC5A as a novel target for the therapeutic control of COPD pathogenesis.
american thoracic society international conference | 2010
Bryan L. Eppert; Gt Motz; Jennifer L. Flury; Katherine Rooney; Brian N. Wortham; Michael T. Borchers
Archive | 2018
Huan Liu; Andrew R. Osterburg; Jennifer L. Flury; Shuo Huang; Francis X. McCormack; Stephania A. Cormier; Michael T. Borchers
american thoracic society international conference | 2011
Brian W. Wortham; Bryan L. Eppert; Jennifer L. Flury; Michael T. Borchers
american thoracic society international conference | 2011
Bryan L. Eppert; Jennifer L. Flury; Brian N. Wortham; Michael T. Borchers