Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer L. Hall is active.

Publication


Featured researches published by Jennifer L. Hall.


Nature | 2010

From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus

Kiran Musunuru; Alanna Strong; Maria Frank-Kamenetsky; Noemi E. Lee; Tim Ahfeldt; Katherine V. Sachs; Xiaoyu Li; Hui Li; Nicolas Kuperwasser; Vera M. Ruda; James P. Pirruccello; Brian Muchmore; Ludmila Prokunina-Olsson; Jennifer L. Hall; Eric E. Schadt; Carlos R. Morales; Sissel Lund-Katz; Michael C. Phillips; Jamie Wong; William Cantley; Timothy Racie; Kenechi G. Ejebe; Marju Orho-Melander; Olle Melander; Victor Koteliansky; Kevin Fitzgerald; Ronald M. Krauss; Chad A. Cowan; Sekar Kathiresan; Daniel J. Rader

Recent genome-wide association studies (GWASs) have identified a locus on chromosome 1p13 strongly associated with both plasma low-density lipoprotein cholesterol (LDL-C) and myocardial infarction (MI) in humans. Here we show through a series of studies in human cohorts and human-derived hepatocytes that a common noncoding polymorphism at the 1p13 locus, rs12740374, creates a C/EBP (CCAAT/enhancer binding protein) transcription factor binding site and alters the hepatic expression of the SORT1 gene. With small interfering RNA (siRNA) knockdown and viral overexpression in mouse liver, we demonstrate that Sort1 alters plasma LDL-C and very low-density lipoprotein (VLDL) particle levels by modulating hepatic VLDL secretion. Thus, we provide functional evidence for a novel regulatory pathway for lipoprotein metabolism and suggest that modulation of this pathway may alter risk for MI in humans. We also demonstrate that common noncoding DNA variants identified by GWASs can directly contribute to clinical phenotypes.


Nature Genetics | 2008

Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease

Steven A. McCarroll; Alan Huett; Petric Kuballa; Shannon D. Chilewski; Aimee Landry; Philippe Goyette; Michael C. Zody; Jennifer L. Hall; Steven R. Brant; Judy H. Cho; Richard H. Duerr; Mark S. Silverberg; Kent D. Taylor; John D. Rioux; David Altshuler; Mark J. Daly; Ramnik J. Xavier

Following recent success in genome-wide association studies, a critical focus of human genetics is to understand how genetic variation at implicated loci influences cellular and disease processes. Crohns disease (CD) is associated with SNPs around IRGM, but coding-sequence variation has been excluded as a source of this association. We identified a common, 20-kb deletion polymorphism, immediately upstream of IRGM and in perfect linkage disequilibrium (r2 = 1.0) with the most strongly CD-associated SNP, that causes IRGM to segregate in the population with two distinct upstream sequences. The deletion (CD risk) and reference (CD protective) haplotypes of IRGM showed distinct expression patterns. Manipulation of IRGM expression levels modulated cellular autophagy of internalized bacteria, a process implicated in CD. These results suggest that the CD association at IRGM arises from an alteration in IRGM regulation that affects the efficacy of autophagy and identify a common deletion polymorphism as a likely causal variant.


Journal of Clinical Investigation | 2011

Adult mouse epicardium modulates myocardial injury by secreting paracrine factors

Bin Zhou; Leah B. Honor; Huamei He; Qing Ma; Jin-Hee Oh; Catherine Butterfield; Ruei-Zeng Lin; Juan M. Melero-Martin; Elena Dolmatova; Heather S. Duffy; Alexander von Gise; Pingzhu Zhou; Yong Wu Hu; Gang Wang; Bing Zhang; Lianchun Wang; Jennifer L. Hall; Marsha A. Moses; Francis X. McGowan; William T. Pu

The epicardium makes essential cellular and paracrine contributions to the growth of the fetal myocardium and the formation of the coronary vasculature. However, whether the epicardium has similar roles postnatally in the normal and injured heart remains enigmatic. Here, we have investigated this question using genetic fate-mapping approaches in mice. In uninjured postnatal heart, epicardial cells were quiescent. Myocardial infarction increased epicardial cell proliferation and stimulated formation of epicardium-derived cells (EPDCs), which remained in a thickened layer on the surface of the heart. EPDCs did not adopt cardiomyocyte or coronary EC fates, but rather differentiated into mesenchymal cells expressing fibroblast and smooth muscle cell markers. In vitro and in vivo assays demonstrated that EPDCs secreted paracrine factors that strongly promoted angiogenesis. In a myocardial infarction model, EPDC-conditioned medium reduced infarct size and improved heart function. Our findings indicate that epicardium modulates the cardiac injury response by conditioning the subepicardial environment, potentially offering a new therapeutic strategy for cardiac protection.


Journal of Clinical Investigation | 2010

Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis

Goutam Ghosh; Indira V. Subramanian; Neeta Adhikari; Xiaoxiao Zhang; Hemant Joshi; David L. Basi; Y. Chandrashekhar; Jennifer L. Hall; Sabita Roy; Yan Zeng; Sundaram Ramakrishnan

Adaptive changes to oxygen availability are critical for cell survival and tissue homeostasis. Prolonged oxygen deprivation due to reduced blood flow to cardiac or peripheral tissues can lead to myocardial infarction and peripheral vascular disease, respectively. Mammalian cells respond to hypoxia by modulating oxygen-sensing transducers that stabilize the transcription factor hypoxia-inducible factor 1α (HIF-1α), which transactivates genes governing angiogenesis and metabolic pathways. Oxygen-dependent changes in HIF-1α levels are regulated by proline hydroxylation and proteasomal degradation. Here we provide evidence for what we believe is a novel mechanism regulating HIF-1α levels in isolated human ECs during hypoxia. Hypoxia differentially increased microRNA-424 (miR-424) levels in ECs. miR-424 targeted cullin 2 (CUL2), a scaffolding protein critical to the assembly of the ubiquitin ligase system, thereby stabilizing HIF-α isoforms. Hypoxia-induced miR-424 was regulated by PU.1-dependent transactivation. PU.1 levels were increased in hypoxic endothelium by RUNX-1 and C/EBPα. Furthermore, miR-424 promoted angiogenesis in vitro and in mice, which was blocked by a specific morpholino. The rodent homolog of human miR-424, mu-miR-322, was significantly upregulated in parallel with HIF-1α in experimental models of ischemia. These results suggest that miR-322/424 plays an important physiological role in post-ischemic vascular remodeling and angiogenesis.


Diabetes | 2008

Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations

Marju Orho-Melander; Olle Melander; Candace Guiducci; Pablo Perez-Martinez; Dolores Corella; Charlotta Roos; Ryan Tewhey; Mark J. Rieder; Jennifer L. Hall; Gonçalo R. Abecasis; E. Shyong Tai; Cullan Welch; Donna K. Arnett; Valeriya Lyssenko; Eero Lindholm; Richa Saxena; Paul I. W. de Bakker; Noël P. Burtt; Benjamin F. Voight; Joel N. Hirschhorn; Katherine L. Tucker; Thomas Hedner; Tiinamaija Tuomi; Bo Isomaa; Karl-Fredrik Eriksson; Marja-Riitta Taskinen; Björn Wahlstrand; Thomas Edward Hughes; Laurence D. Parnell; Chao Qiang Lai

OBJECTIVE—Using the genome-wide association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metabolic phenotypes, including measures of glucose homeostasis, to evaluate the GCKR locus in samples of non-European ancestry and to fine- map across the associated genomic interval. RESEARCH DESIGN AND METHODS—We performed association studies in 12 independent cohorts comprising >45,000 individuals representing several ancestral groups (whites from Northern and Southern Europe, whites from the U.S., African Americans from the U.S., Hispanics of Caribbean origin, and Chinese, Malays, and Asian Indians from Singapore). We conducted genetic fine-mapping across the ∼417-kb region of linkage disequilibrium spanning GCKR and 16 other genes on chromosome 2p23 by imputing untyped HapMap single nucleotide polymorphisms (SNPs) and genotyping 104 SNPs across the associated genomic interval. RESULTS—We provide comprehensive evidence that GCKR rs780094 is associated with opposite effects on fasting plasma triglyceride (Pmeta = 3 × 10−56) and glucose (Pmeta = 1 × 10−13) concentrations. In addition, we confirmed recent reports that the same SNP is associated with C-reactive protein (CRP) level (P = 5 × 10−5). Both fine-mapping approaches revealed a common missense GCKR variant (rs1260326, Pro446Leu, 34% frequency, r2 = 0.93 with rs780094) as the strongest association signal in the region. CONCLUSIONS—These findings point to a molecular mechanism in humans by which higher triglycerides and CRP can be coupled with lower plasma glucose concentrations and position GCKR in central pathways regulating both hepatic triglyceride and glucose metabolism.


Journal of the American College of Cardiology | 2012

Lipoprotein(a) as a Potential Causal Genetic Risk Factor of Cardiovascular Disease: A Rationale for Increased Efforts to Understand its Pathophysiology and Develop Targeted Therapies

Sotirios Tsimikas; Jennifer L. Hall

Recent published studies have provided increasing evidence that lipoprotein(a) [Lp(a)] may be a potential causal, genetic, independent risk factor for cardiovascular disease (CVD). Lp(a) levels >25 mg/dl are present in ∼30% of Caucasians and 60% to 70% of Blacks. Lp(a) is composed of apolipoprotein B-100 and apolipoprotein (a) [(apo(a)]. Circulating Lp(a) levels are primarily influenced by the LPA gene without significant dietary or environmental effects, mediating CVD risk throughout the patients lifetime. Recent clinical outcomes studies, meta-analyses, and Mendelian randomization studies, in which randomization of Lp(a) levels is achieved through the random assortment of LPA gene variants thereby removing confounders, have shown that genetically determined Lp(a) levels are continuously and linearly related to risk of CVD. Currently, Lp(a) pathophysiology is not fully understood, and specifically targeted therapies to lower Lp(a) are not available. We provide a rationale for increased basic and clinical investigational efforts to further understand Lp(a) pathophysiology and assess whether reducing Lp(a) levels minimizes CVD risk. First, a detailed understanding of Lp(a) synthesis and clearance has not been realized. Second, several mechanisms of atherogenicity are known to varying extent, but the relative contributions of each are not known. Lp(a) may be atherothrombotic through its low-density lipoprotein moiety, but also through apo(a), including its ability to be retained in the vessel wall and mediate pro-inflammatory and proapoptotic effects including those potentiated by its content of oxidized phospholipids, and antifibrinolytic effects. Finally, development of specific Lp(a)-lowering agents to potently lower Lp(a) will allow testing of mechanistic hypotheses in animal models and the design of randomized clinical trials to assess reduction in CVD. A convergence of academic, scientific, pharmaceutical, and National Institutes of Health priorities and efforts can make this a reality in the next decade.


Circulation | 2004

Identification of a Gene Expression Profile That Differentiates Between Ischemic and Nonischemic Cardiomyopathy

M. Kittleson; Shui Q. Ye; Rafael A. Irizarry; Khalid M. Minhas; John V. Conte; Giovanni Parmigiani; Leslie W. Miller; Yingjie Chen; Jennifer L. Hall; Joe G. N. Garcia; Joshua M. Hare

Background—Gene expression profiling refines diagnostic and prognostic assessment in oncology but has not yet been applied to myocardial diseases. We hypothesized that gene expression differentiates ischemic and nonischemic cardiomyopathy, demonstrating that gene expression profiling by clinical parameters is feasible in cardiology. Methods and Results—Affymetrix U133A microarrays of 48 myocardial samples from Johns Hopkins Hospital (JHH) and the University of Minnesota (UM) obtained (1) at transplantation or left ventricular assist device (LVAD) placement (end-stage; n=25), (2) after LVAD support (post-LVAD; n=16), and (3) from newly diagnosed patients (biopsy; n=7) were analyzed with prediction analysis of microarrays. A training set was used to develop the profile and test sets to validate the accuracy of the profile. An etiology prediction profile developed in end-stage JHH samples was tested in independent samples from both JHH and UM with 100% sensitivity and 100% specificity in end-stage samples and 33% sensitivity and 100% specificity in both post-LVAD and biopsy samples. The overall sensitivity was 89% (95% CI 75% to 100%), and specificity was 89% (95% CI 60% to 100%) over 210 random partitions of end-stage samples into training and test sets. Age, gender, and hemodynamic differences did not affect the profile’s accuracy in stratified analyses. Select gene expression was confirmed with quantitative polymerase chain reaction. Conclusions—Gene expression profiling accurately predicts cardiomyopathy etiology, is generalizable to samples from separate institutions, is specific to disease stage, and is unaffected by differences in clinical characteristics. This strongly supports ongoing efforts to incorporate expression profiling–based biomarkers in determining prognosis and response to therapy in heart failure.


Circulation | 2010

Oxidative Stress Regulates Left Ventricular PDE5 Expression in the Failing Heart

Zhongbing Lu; Xin Xu; Xinli Hu; Sangjin Lee; Jay H. Traverse; Guangshuo Zhu; John Fassett; Yi Tao; Ping Zhang; Cris dos Remedios; Marc Pritzker; Jennifer L. Hall; Daniel J. Garry; Yingjie Chen

Background— Phosphodiesterase type 5 (PDE5) inhibition has been shown to exert profound beneficial effects in the failing heart, suggesting a significant role for PDE5 in the development of congestive heart failure (CHF). The purpose of this study is to test the hypothesis that oxidative stress causes increased PDE5 expression in cardiac myocytes and that increased PDE5 contributes to the development of CHF. Methods and Results— Myocardial PDE5 expression and cellular distribution were determined in left ventricular samples from patients with end-stage CHF and normal donors and from mice after transverse aortic constriction (TAC)–induced CHF. Compared with donor human hearts, myocardial PDE5 protein was increased ≈4.5-fold in CHF samples, and the increase of myocardial PDE5 expression was significantly correlated with myocardial oxidative stress markers 3′-nitrotyrosine or 4-hydroxynonenal expression (P<0.05). Histological examination demonstrated that PDE5 was mainly expressed in vascular smooth muscle in normal donor hearts, but its expression was increased in both cardiac myocytes and vascular smooth muscle of CHF hearts. Myocardial PDE5 protein content and activity also increased in mice after TAC-induced CHF (P<0.05). When the superoxide dismutase (SOD) mimetic M40401 was administered to attenuate oxidative stress, the increased PDE5 protein and activity caused by TAC was blunted, and the hearts were protected against left ventricular hypertrophy and CHF. Conversely, increased myocardial oxidative stress in superoxide dismutase 3 knockout mice caused a greater increase of PDE5 expression and CHF after TAC. In addition, administration of sildenafil to inhibit PDE5 attenuated TAC-induced myocardial oxidative stress, PDE5 expression, and CHF. Conclusions— Myocardial oxidative stress increases PDE5 expression in the failing heart. Reducing oxidative stress by treatment with M40401 attenuated cardiomyocyte PDE5 expression. This and selective inhibition of PDE5 protected the heart against pressure overload-induced left ventricular hypertrophy and CHF.


Journal of the American College of Cardiology | 2011

Clinical, molecular, and genomic changes in response to a left ventricular assist device

Jennifer L. Hall; David R. Fermin; Emma J. Birks; Paul J.R. Barton; Mark S. Slaughter; Peter Eckman; Hideo Baba; Jeremias Wohlschlaeger; Leslie W. Miller

The use of left ventricular assist devices in treating patients with end-stage heart failure has increased significantly in recent years, both as a bridge to transplantation and as destination therapy in those who are ineligible for cardiac transplantation. This increase is based largely on the results of several recently completed clinical trials with the new second-generation continuous-flow devices that showed significant improvements in survival, functional capacity, and quality of life. Additional information on the use of the first- and second-generation left ventricular assist devices has come from a recently released report spanning the years 2006 to 2009, from the Interagency Registry for Mechanically Assisted Circulatory Support, a National Heart, Lung, and Blood Institute-sponsored collaboration between the U.S. Food and Drug Administration, the Centers for Medicare and Medicaid Services, and the scientific community. The authors review the latest clinical trials and data from the registry, with tight integration of the landmark molecular, cellular, and genomic research that accompanies the reverse remodeling of the human heart in response to a left ventricular assist device and functional recovery that has been reported in a subset of these patients.


Human Molecular Genetics | 2009

Tissue-specific alternative splicing of TCF7L2.

Ludmila Prokunina-Olsson; Cullan Welch; Ola Hansson; Neeta Adhikari; Laura J. Scott; Nicolle Usher; Maurine Tong; Andrew G. Sprau; Amy J. Swift; Lori L. Bonnycastle; Michael R. Erdos; Zhi He; Richa Saxena; Brennan Harmon; Olga Kotova; Eric P. Hoffman; David Altshuler; Leif Groop; Michael Boehnke; Francis S. Collins; Jennifer L. Hall

Common variants in the transcription factor 7-like 2 (TCF7L2) gene have been identified as the strongest genetic risk factors for type 2 diabetes (T2D). However, the mechanisms by which these non-coding variants increase risk for T2D are not well-established. We used 13 expression assays to survey mRNA expression of multiple TCF7L2 splicing forms in up to 380 samples from eight types of human tissue (pancreas, pancreatic islets, colon, liver, monocytes, skeletal muscle, subcutaneous adipose tissue and lymphoblastoid cell lines) and observed a tissue-specific pattern of alternative splicing. We tested whether the expression of TCF7L2 splicing forms was associated with single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene and most strongly associated with T2D. Expression of two splicing forms was lower in pancreatic islets with increasing counts of T2D-associated alleles of the SNPs: a ubiquitous splicing form (P = 0.018 for rs7903146 and P = 0.020 for rs12255372) and a splicing form found in pancreatic islets, pancreas and colon but not in other tissues tested here (P = 0.009 for rs12255372 and P = 0.053 for rs7903146). Expression of this form in glucose-stimulated pancreatic islets correlated with expression of proinsulin (r2 = 0.84–0.90, P < 0.00063). In summary, we identified a tissue-specific pattern of alternative splicing of TCF7L2. After adjustment for multiple tests, no association between expression of TCF7L2 in eight types of human tissue samples and T2D-associated genetic variants remained significant. Alternative splicing of TCF7L2 in pancreatic islets warrants future studies. GenBank Accession Numbers: FJ010164–FJ010174.

Collaboration


Dive into the Jennifer L. Hall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie W. Miller

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ami Mariash

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Yingjie Chen

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qinglu Li

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Sean Polster

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Xinqiang Han

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge