Jennifer L. Juengel
AgResearch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer L. Juengel.
Nature Genetics | 2000
Susan M. Galloway; Kenneth P. McNatty; Lisa Cambridge; Mika Laitinen; Jennifer L. Juengel; T. Sakari Jokiranta; Robert J. McLaren; Kaisu Luiro; K. G. Dodds; Grant W. Montgomery; Anne E. Beattie; George H. Davis; Olli Ritvos
Multiple ovulations are uncommon in humans, cattle and many breeds of sheep. Pituitary gonadotrophins and as yet unidentified ovarian factors precisely regulate follicular development so that, normally, only one follicle is selected to ovulate. The Inverdale (FecXI) sheep, however, carries a naturally occurring X-linked mutation that causes increased ovulation rate and twin and triplet births in heterozygotes (FecXI/FecX+; ref. 1), but primary ovarian failure in homozygotes (FecXI/FecXI; ref. 2). Germ-cell development, formation of the follicle and the earliest stages of follicular growth are normal in FecXI/FecXI sheep, but follicular development beyond the primary stage is impaired. A second family unrelated to the Inverdale sheep also has the same X-linked phenotype (Hanna, FecXH). Crossing FecXI with FecXH animals produces FecXI/FecXH infertile females phenotypically indistinguishable from FecXI/FecXI females. We report here that the FecXI locus maps to an orthologous chromosomal region syntenic to human Xp11.2–11.4, which contains BMP15, encoding bone morphogenetic protein 15 (also known as growth differentiation factor 9B (GDF9B)). Whereas BMP15 is a member of the transforming growth factor β (TGFβ) superfamily and is specifically expressed in oocytes, its function is unknown. We show that independent germline point mutations exist in FecXI and FecXH carriers. These findings establish that BMP15 is essential for female fertility and that natural mutations in an ovary-derived factor can cause both increased ovulation rate and infertility phenotypes in a dosage-sensitive manner.
Biology of Reproduction | 2001
Theresa Wilson; Xi-Yang Wu; Jennifer L. Juengel; Ian Ross; Joanne M. Lumsden; Eric A. Lord; K. G. Dodds; Grant A. Walling; J. C. McEwan; Anne R. O'Connell; Kenneth P. McNatty; Grant W. Montgomery
Abstract The Booroola fecundity gene (FecB) increases ovulation rate and litter size in sheep and is inherited as a single autosomal locus. The effect of FecB is additive for ovulation rate (increasing by about 1.6 corpora lutea per cycle for each copy) and has been mapped to sheep chromosome 6q23–31, which is syntenic to human chromosome 4q21–25. Bone morphogenetic protein IB (BMP-IB) receptor (also known as ALK-6), which binds members of the transforming growth factor-β (TGF-β) superfamily, is located in the region containing the FecB locus. Booroola sheep have a mutation (Q249R) in the highly conserved intracellular kinase signaling domain of the BMP-IB receptor. The mutation segregated with the FecB phenotype in the Booroola backcross and half-sib flocks of sheep with no recombinants. The mutation was not found in individuals from a number of sheep breeds not derived from the Booroola strain. BMPR-IB was expressed in the ovary and in situ hybridization revealed its specific location to the oocyte and the granulosa cell. Expression of mRNA encoding the BMP type II receptor was widespread throughout the ovary. The mutation in BMPR-IB found in Booroola sheep is the second reported defect in a gene from the TGF-β pathway affecting fertility in sheep following the recent discovery of mutations in the growth factor, GDF9b/BMP15.
Biology of Reproduction | 2002
Jennifer L. Juengel; N. L. Hudson; Derek A. Heath; Peter Smith; Karen L. Reader; Steve Lawrence; Anne R. O'Connell; Mika Laitinen; Mark Cranfield; Nigel P. Groome; Olli Ritvos; Kenneth P. McNatty
Abstract The aim of this study was to test the hypothesis that both growth differential factor 9 (GDF9) and bone morphogenetic protein (BMP15; also known as GDF9B) are essential for normal ovarian follicular development in mammals with a low ovulation rate phenotype. Sheep (9–10 per group) were immunized with keyhole limpet hemocyanin (KLH; control), a GDF9-specific peptide conjugated to KLH (GDF9 peptide), a BMP15-specific peptide conjugated to KLH (BMP15 peptide), or the mature region of oBMP15 conjugated to KLH (oBMP15 mature protein) for a period of 7 mo and the effects of these treatments on various ovarian parameters such as ovarian follicular development, ovulation rate, and plasma progesterone concentrations evaluated. Also in the present study, we examined, by immunohistochemistry, the cellular localizations of GDF9 and BMP15 proteins in the ovaries of lambs. Both GDF9 and BMP15 proteins were localized specifically within ovarian follicles to the oocyte, thereby establishing for the sheep that the oocyte is the only intraovarian source of these growth factors. Immunization with either GDF9 peptide or BMP15 peptide caused anovulation in 7 of 10 and 9 of 10 ewes, respectively, when assessed at ovarian collection. Most ewes (7 of 10) immunized with oBMP15 mature protein had a least one observable estrus during the experimental period, and ovulation rate at this estrus was higher in these ewes compared with those immunized with KLH alone. In both the KLH-GDF9 peptide- and KLH-BMP15 peptide-treated ewes, histological examination of the ovaries at recovery (i.e., ∼7 mo after the primary immunization) showed that most animals had few, if any, normal follicles beyond the primary (i.e., type 2) stage of development. In addition, abnormalities such as enlarged oocytes surrounded by a single layer of flattened and/or cuboidal granulosa cells or oocyte-free nodules of granulosa cells were often observed, especially in the anovulatory ewes. Passive immunization of ewes, each given 100 ml of a pool of plasma from the GDF9 peptide- or BMP15 peptide-immunized ewes at 4 days before induction of luteal regression also disrupted ovarian function. The ewes given the plasma against the GDF9 peptide formed 1–2 corpora lutea but 3 of 5 animals did not display normal luteal phase patterns of progesterone concentrations. The effect of plasma against the BMP15 peptide was more dramatic, with 4 of 5 animals failing to ovulate and 3 of 5 ewes lacking surface-visible antral follicles at laparoscopy. By contrast, administration of plasma against KLH did not affect ovulation rate or luteal function in any animal. In conclusion, these findings support the hypothesis that, in mammals with a low ovulation rate phenotype, both oocyte-derived GDF9 and BMP15 proteins are essential for normal follicular development, including both the early and later stages of growth.
Biology of Reproduction | 2002
Heywood R. Sawyer; Peter Smith; Derek A. Heath; Jennifer L. Juengel; St. John Wakefield; Kenneth P. McNatty
Abstract The origin of follicle (i.e., pregranulosa) cells that become the somatic component of primordial follicles is obscure. In addition, information regarding the structural changes that accompany the concomitant regression of ovigerous cords and the appearance of primordial follicles is lacking. In the present study, ovine ovaries collected at frequent time intervals between Day 38 and Day 100 of fetal life were examined by light and electron microscopy. To gain new information regarding the origin of follicular cells, incorporation of 5-bromo-2′-deoxyuridine was used to identify proliferating cells at selected stages of development. Based on the location and identity of proliferating cells, apoptotic cells, and sequential changes in histoarchitecture, we hypothesize 1) that most (i.e., >95%) of the granulosal cells in newly formed primordial follicles originate from the ovarian surface epithelium; 2) that the sequential events leading to follicle formation take place entirely within ovigerous cords, with the first follicles forming at the interface of the cortex and medulla; and 3) that the loss (i.e., >75%) of germ cells, but not of somatic cells, within the ovigerous cords is a means by which each surviving oocyte gains additional pregranulosal cells before follicle formation. Conceptual models detailing the chronology of developmental events involved in the formation of primordial follicles in sheep are discussed.
Biology of Reproduction | 2004
Jennifer L. Juengel; N. L. Hudson; Lynda Whiting; Kenneth P. McNatty
Abstract Immunization of ewes against growth differentiation factor 9 (GDF9) or bone morphogenetic protein 15 (BMP15) can lead to an increased ovulation rate; however, it is not known whether normal pregnancies occur following such treatments. The aims of the present study were to determine the effects of a short-term immunization regimen against BMP15 and GDF9 on ovulation rate, fertilization of released oocytes, the ability of fertilized oocytes to undergo normal fetal development, and the ability of immunized ewes to carry a pregnancy to term. Ewes were given a primary and booster immunization against keyhole limpet hemocyanin (KLH; control, n = 50), a GDF9-specific peptide conjugated to KLH (GDF9, n = 30), or a BMP15-specific peptide conjugated to KLH (BMP15, n = 30). The estrous cycles of all ewes were synchronized, and ewes were joined with fertile rams approximately 14 days after the booster immunization. The number of corpora lutea was determined by laparoscopy 3–4 days following mating. Subsequently, about one-half of the ewes in each group underwent an embryo transfer procedure 4–6 days following mating, with the embryos being transferred to synchronized, nonimmunized recipients. The remaining ewes were allowed to carry their pregnancies to term. Short-term immunization against either BMP15 or GDF9 peptides resulted in an increase in ovulation rate with no apparent detrimental affects on fertilization of released oocytes, the ability of fertilized oocytes to undergo normal fetal development, or the ability of the immunized ewes to carry a pregnancy to term. Therefore, regulation of BMP15, GDF9, or both is potentially a new technique to enhance fecundity in some mammals.
Biology of Reproduction | 2001
Laurel D. Quirke; Jennifer L. Juengel; David J. Tisdall; Stan Lun; Derek A. Heath; Kenneth P. McNatty
Abstract The aim of this study was to determine 1) the time of onset and cellular localization of gene expression for steroidogenic factor-1 (SF-1), steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase/Δ5,Δ4 isomerase (3β-HSD), and the cytochrome P450 enzymes for cholesterol side-chain cleavage (P450scc), 17α-hydroxylase (P45017αOH), and aromatase (P450arom) during gonadal development; and 2) the amount of progesterone, androstenedione, testosterone, and 17β-estradiol present in the fetal sheep gonad. Fetuses were collected on Days 24, 26, 28, 30, 32, 35, 40, 55, and 75 of gestation, and gene expression was determined by in situ hybridization. The steroid content of gonads collected on Days 30, 35, 55, and 75 of gestation was determined by RIA. Developing gonads collected from both male and female fetuses were steroidogenically active around the time of morphological sexual differentiation. In the female, the steroidogenic cells were initially located at the boundary of the cortex and medulla but become increasingly restricted to the mesonephric-derived cell streams. In the male, once tubules were identifiable, steroidogenesis was restricted to the interstitial regions. Interestingly, expression of both SF-1 and 3β-HSD was observed prior to morphological sexual differentiation. In addition, expression of both of these genes was more widespread than the other genes in both males and females.
Biology of Reproduction | 2007
Kenneth P. McNatty; N. L. Hudson; Lynda Whiting; Karen L. Reader; Stan Lun; Andrea Western; Derek A. Heath; Peter Smith; L G Moore; Jennifer L. Juengel
Abstract The aims of these studies were to determine the abilities of antisera against different regions of ovine bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) to inhibit ovarian follicular activity, estrus (mating), and ovulation in sheep. The 9–15-mer peptides were conjugated to keyhole limpet hemocyanin (KLH) and used to generate antibodies against the flexible N-terminal regions of the mature protein as well as against regions in which dimerization of the protein or interaction with a type 1 BMP or a type 2 TGFB or BMP receptor was predicted to occur. Ewes (n = 10 per treatment group) were vaccinated with KLH or the KLH-BMP15 (n = 9 different peptides) or KLH-GDF9 (n = 10) peptides in Freund adjuvant at five consecutive monthly intervals. Overall, antisera generated against peptides that corresponded to amino acid residues 1–15 of the N-terminus of the BMP15 or GDF9 mature protein or GDF9 amino acid residues 21–34 were the most potent at inhibiting ovulation following primary and single booster vaccination. Several other BMP15 (8/9) or GDF9 (6/10) treatment groups, but not KLH alone, also produced significant reductions in the numbers of animals that ovulated, although 2, 3 or 4 booster vaccinations were required. Anovulation was commonly associated with the inhibition of normal ovarian follicular development and anestrus. The in vitro neutralization studies with IgG from the BMP15 or GDF9 immunized ewes showed that the mean inhibition of BMP15 plus GDF9 stimulation of 3H-thymidine uptake by rat granulosa cells was approximately 70% for animals without corpora lutea (CL), whereas for animals with one to three CL or more than three CL, the inhibition was 24%–33% or 27%–42%, respectively. In summary, these data suggest that reagents that block the biological actions of BMP15 or GDF9 at their N-termini have potential as contraceptives or sterilizing agents.
Biology of Reproduction | 2008
C. Joy McIntosh; Stan Lun; Steve Lawrence; Andrea Western; Kenneth P. McNatty; Jennifer L. Juengel
Abstract Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) are secreted by the mammalian oocyte and are essential for ovarian follicular development, ovulation, and fertility. However, the secreted forms of the BMP15 and GDF9 proteins and the nature of cooperative molecular interactions between BMP15 and GDF9 previously reported have not been fully characterized. In this study, we found that recombinant mouse BMP15 and GDF9 are secreted as cleaved mature and proregion proteins, with BMP15 also secreted as uncleaved promature protein. Noncovalent interactions were identified between the mature and proregion proteins of each growth factor. Moreover, GDF9 mature protein was found to coimmunoprecipitate with the BMP15 proregion, suggestive of a heteromeric association between BMP15 and GDF9. Mouse GDF9 was found to exist mostly as a dimer of mature protein, in both the presence and absence of BMP15. In contrast, BMP15 formed mostly multimers of proregion and mature protein when combined with GDF9, providing further evidence for heteromeric interaction. Mouse BMP15 was found to act cooperatively with GDF9 in a rat granulosa cell thymidine incorporation bioassay and to signal through the BMPR2 and ACVR1B/TGFBR1/ACVR1C receptor-mediated pathways. Immunoneutralization experiments using GDF9 mature protein antibody indicated that these cooperative interactions are species specific. Additionally, immunoneutralization with proregion antibodies highlighted the involvement of the BMP15 proregion in BMP15/GDF9 cooperative interactions. Taken together, these findings support a novel hypothesis where the extracellular cooperative interactions of recombinant mouse BMP15 and GDF9 are multimeric, involving the proregion of BMP15, and may well be species specific..
Molecular and Cellular Endocrinology | 2002
Douglas C. Eckery; Lisa J. Whale; Stephen B. Lawrence; Katherine A. Wylde; Kenneth P. McNatty; Jennifer L. Juengel
The oocyte derived growth differentiation factor (GDF) 9 and bone morphogenetic protein 15 (BMP15; also known as GDF9b) are essential for normal follicular growth. However, little is known about expression of these factors during ovarian development. Therefore, we determined the ontogeny of expression of GDF9 and BMP15 mRNA in the developing ovary of the brushtail possum. Ovaries were collected from pouch young (n=3-5 per group) around times of key developmental events namely: (1) morphological sexual differentiation (i.e. days 1-5 following birth), (2) after sexual differentiation (i.e. days 10-15), (3) before and during initiation of germ-cell meiosis (i.e. days 22-45), (4) shortly after initiation of follicular growth (i.e. days 78-85), (5) during preantral follicular growth (i.e. days 96-113) and (6) during antral follicular growth (i.e. days 155-190). Ovaries were also collected from three juvenile and four adult animals and gene expression was determined by in situ hybridization. The mRNAs encoding GDF9 and BMP15 were first observed in oocytes of newly-formed primordial follicles (i.e. days 78-85). Expression of both mRNAs was restricted to the oocyte and was present in follicles irrespective of whether they were non-growing primordial follicles or undergoing preantral or antral development. Thus, since the mRNAs encoding GDF9 and BMP15 were not observed until follicular formation, it is unlikely that these proteins have any role in early germ cell development. Nevertheless, the findings that the mRNAs encoding both proteins were observed in oocytes from the primordial stage of follicular formation suggest a possible role for these proteins in the maintenance of primordial follicles as well as a key role during follicular development. These results highlight important species differences in the ontogeny of expression of GDF9 and BMP15 between possums and other species such as the human, sheep or rat.
Biology of Reproduction | 2007
Elisabeth S. Feary; Jennifer L. Juengel; Peter Smith; Michelle C. French; Anne R. O'Connell; Stephen B. Lawrence; Susan M. Galloway; George H. Davis; Kenneth P. McNatty
Abstract Woodlands sheep have a putative genetic mutation (FecX2W) that increases ovulation rate. At present, the identity of FecX2W is unknown. The trait does not appear to be due to the previously described mutations in bone morphogenetic protein 15 (BMP15), growth differentiation factor 9 (GDF9), or bone morphogenetic protein receptor type 1B (BMPR1B) that affect ovulation rate in sheep. Potentially, FecX2W could be an unidentified genetic mutation in BMP15 or in the closely related GDF9, which interacts with BMP15 to control ovarian function. Alternatively, FecX2W may affect ovulation rate by changing the expression patterns in the molecular pathways activated by genes known to regulate ovulation rate. The objectives of these experiments were to sequence the complete coding region of the BMP15 and GDF9 genes, determine the patterns of expression of mRNAs encoding GDF9, BMP15, TGFBR1, BMPR1B, and BMPR2 during follicular development, and characterize the follicular populations in ewes heterozygous for the Woodlands mutation and their wild-type contemporaries. No differences in the coding sequences of BMP15 or GDF9 genes were identified that were associated with enhanced ovulation rate. The expression patterns of GDF9 and BMPR2 mRNAs were not different between genotypes. However, expression of BMP15 mRNA was less in oocytes of FecX2W ewes in large preantral and antral follicles. Expression of ALK5 mRNA was significantly higher in the oocytes of FecX2W ewes, whereas expression of BMPR1B was decreased in both oocytes and granulosa cells of FecX2W ewes. FecX2W ewes also had increased numbers of antral follicles <1 mm in diameter. These follicles were smaller in average diameter, with the oocytes also being of a smaller mean diameter. Given that a mutation in BMP15 or BMPR1B results in increased ovulation rates in sheep, the differences in expression levels of BMP15 and BMPR1B may play a role in the increase in ovulation rate observed in Woodlands ewes with the FecX2W mutation.