Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer L. Moran is active.

Publication


Featured researches published by Jennifer L. Moran.


Nature | 2009

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

Shaun Purcell; Naomi R. Wray; Jennifer Stone; Peter M. Visscher; Michael Conlon O'Donovan; Patrick F. Sullivan; Pamela Sklar; Douglas M. Ruderfer; Andrew McQuillin; Derek W. Morris; Colm O’Dushlaine; Aiden Corvin; Peter Holmans; Michael C. O’Donovan; Stuart MacGregor; Hugh Gurling; Douglas Blackwood; Nicholas John Craddock; Michael Gill; Christina M. Hultman; George Kirov; Paul Lichtenstein; Walter J. Muir; Michael John Owen; Carlos N. Pato; Edward M. Scolnick; David St Clair; Nigel Melville Williams; Lyudmila Georgieva; Ivan Nikolov

Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%. We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.


Nature | 2014

De novo mutations in schizophrenia implicate synaptic networks

Menachem Fromer; Andrew Pocklington; David H. Kavanagh; Hywel Williams; Sarah Dwyer; Padhraig Gormley; Lyudmila Georgieva; Elliott Rees; Priit Palta; Douglas M. Ruderfer; Noa Carrera; Isla Humphreys; Jessica S. Johnson; Panos Roussos; Douglas D. Barker; Eric Banks; Vihra Milanova; Seth G. N. Grant; Eilis Hannon; Samuel A. Rose; K D Chambert; Milind Mahajan; Edward M. Scolnick; Jennifer L. Moran; George Kirov; Aarno Palotie; Steven A. McCarroll; Peter Holmans; Pamela Sklar; Michael John Owen

Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case–control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders.


Nature | 2014

A polygenic burden of rare disruptive mutations in schizophrenia

Shaun Purcell; Jennifer L. Moran; Menachem Fromer; Douglas M. Ruderfer; Nadia Solovieff; Panos Roussos; Colm O'Dushlaine; K D Chambert; Sarah E. Bergen; Anna K. Kähler; Laramie Duncan; Eli A. Stahl; Giulio Genovese; Esperanza Fernández; Mark O. Collins; Noboru H. Komiyama; Jyoti S. Choudhary; Patrik K. E. Magnusson; Eric Banks; Khalid Shakir; Kiran Garimella; Timothy Fennell; Mark DePristo; Seth G. N. Grant; Stephen J. Haggarty; Stacey Gabriel; Edward M. Scolnick; Eric S. Lander; Christina M. Hultman; Patrick F. Sullivan

Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.


Molecular Psychiatry | 2012

De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia.

George Kirov; Andrew Pocklington; Peter Alan Holmans; Dobril Ivanov; Masashi Ikeda; Douglas M. Ruderfer; Jennifer L. Moran; Draga Toncheva; Lyudmila Georgieva; Detelina Grozeva; Marija Fjodorova; Rebecca Louise Wollerton; Elliott Rees; Ivan Nikolov; L N van de Lagemaat; Àlex Bayés; Esperanza Fernández; Pall Olason; Yvonne Böttcher; Noboru H. Komiyama; Mark O. Collins; Jyoti S. Choudhary; Kari Stefansson; Hreinn Stefansson; Seth G. N. Grant; Shaun Purcell; Pamela Sklar; Michael Conlon O'Donovan; Michael John Owen

A small number of rare, recurrent genomic copy number variants (CNVs) are known to substantially increase susceptibility to schizophrenia. As a consequence of the low fecundity in people with schizophrenia and other neurodevelopmental phenotypes to which these CNVs contribute, CNVs with large effects on risk are likely to be rapidly removed from the population by natural selection. Accordingly, such CNVs must frequently occur as recurrent de novo mutations. In a sample of 662 schizophrenia proband–parent trios, we found that rare de novo CNV mutations were significantly more frequent in cases (5.1% all cases, 5.5% family history negative) compared with 2.2% among 2623 controls, confirming the involvement of de novo CNVs in the pathogenesis of schizophrenia. Eight de novo CNVs occurred at four known schizophrenia loci (3q29, 15q11.2, 15q13.3 and 16p11.2). De novo CNVs of known pathogenic significance in other genomic disorders were also observed, including deletion at the TAR (thrombocytopenia absent radius) region on 1q21.1 and duplication at the WBS (Williams–Beuren syndrome) region at 7q11.23. Multiple de novos spanned genes encoding members of the DLG (discs large) family of membrane-associated guanylate kinases (MAGUKs) that are components of the postsynaptic density (PSD). Two de novos also affected EHMT1, a histone methyl transferase known to directly regulate DLG family members. Using a systems biology approach and merging novel CNV and proteomics data sets, systematic analysis of synaptic protein complexes showed that, compared with control CNVs, case de novos were significantly enriched for the PSD proteome (P=1.72 × 10−6). This was largely explained by enrichment for members of the N-methyl-D-aspartate receptor (NMDAR) (P=4.24 × 10−6) and neuronal activity-regulated cytoskeleton-associated protein (ARC) (P=3.78 × 10−8) postsynaptic signalling complexes. In an analysis of 18 492 subjects (7907 cases and 10 585 controls), case CNVs were enriched for members of the NMDAR complex (P=0.0015) but not ARC (P=0.14). Our data indicate that defects in NMDAR postsynaptic signalling and, possibly, ARC complexes, which are known to be important in synaptic plasticity and cognition, play a significant role in the pathogenesis of schizophrenia.


Nature Genetics | 2012

Exome sequencing and the genetic basis of complex traits

Adam Kiezun; Kiran Garimella; Ron Do; Nathan O. Stitziel; Benjamin M. Neale; Paul J. McLaren; Namrata Gupta; Pamela Sklar; Patrick F. Sullivan; Jennifer L. Moran; Christina M. Hultman; Paul Lichtenstein; Patrik K. E. Magnusson; Thomas Lehner; Yin Yao Shugart; Alkes L. Price; Paul I. W. de Bakker; Shaun Purcell; Shamil R. Sunyaev

Shamil Sunyaev and colleagues present exome sequencing methods and their applications in studies to identify the genetic basis of human complex traits. They include analyses of the whole-exome sequences of 438 individuals from across several studies.


Nature Methods | 2009

Agouti C57BL/6N embryonic stem cells for mouse genetic resources.

Stephen J. Pettitt; Qi Liang; Xin Y Rairdan; Jennifer L. Moran; Haydn M. Prosser; David R. Beier; Kent C Lloyd; Allan Bradley; William C. Skarnes

We report the characterization of a highly germline competent C57BL/6N mouse embryonic stem cell line, JM8. To simplify breeding schemes, the dominant agouti coat color gene was restored in JM8 cells by targeted repair of the C57BL/6 nonagouti mutation. These cells provide a robust foundation for large-scale mouse knockout programs that aim to provide a public resource of targeted mutations in the C57BL/6 genetic background.


British Journal of Psychiatry | 2014

Analysis of copy number variations at 15 schizophrenia-associated loci

Elliott Rees; James Tynan Rhys Walters; Lyudmila Georgieva; Anthony Roger Isles; Alexander Richards; Gerwyn Mahoney-Davies; Sophie E. Legge; Jennifer L. Moran; Steven A. McCarroll; Michael Conlon O'Donovan; Michael John Owen; George Kirov

Background A number of copy number variants (CNVs) have been suggested as susceptibility factors for schizophrenia. For some of these the data remain equivocal, and the frequency in individuals with schizophrenia is uncertain. Aims To determine the contribution of CNVs at 15 schizophrenia-associated loci (a) using a large new data-set of patients with schizophrenia (n = 6882) and controls (n = 6316), and (b) combining our results with those from previous studies. Method We used Illumina microarrays to analyse our data. Analyses were restricted to 520 766 probes common to all arrays used in the different data-sets. Results We found higher rates in participants with schizophrenia than in controls for 13 of the 15 previously implicated CNVs. Six were nominally significantly associated (P<0.05) in this new data-set: deletions at 1q21.1, NRXN1, 15q11.2 and 22q11.2 and duplications at 16p11.2 and the Angelman/Prader-Willi Syndrome (AS/PWS) region. All eight AS/PWS duplications in patients were of maternal origin. When combined with published data, 11 of the 15 loci showed highly significant evidence for association with schizophrenia (P<4.1×10–4). Conclusions We strengthen the support for the majority of the previously implicated CNVs in schizophrenia. About 2.5% of patients with schizophrenia and 0.9% of controls carry a large, detectable CNV at one of these loci. Routine CNV screening may be clinically appropriate given the high rate of known deleterious mutations in the disorder and the comorbidity associated with these heritable mutations.


Molecular Psychiatry | 2012

Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder

Sarah E. Bergen; Colm O'Dushlaine; Stephan Ripke; Phil H. Lee; Douglas M. Ruderfer; Susanne Akterin; Jennifer L. Moran; Robert E. Handsaker; Lena Backlund; Urban Ösby; Steven A. McCarroll; Mikael Landén; Edward M. Scolnick; Patrik K. E. Magnusson; Paul Lichtenstein; Christina M. Hultman; Shaun Purcell; Pamela Sklar; Patrick F. Sullivan

Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable psychiatric disorders with overlapping susceptibility loci and symptomatology. We conducted a genome-wide association study (GWAS) of these disorders in a large Swedish sample. We report a new and independent case–control analysis of 1507 SCZ cases, 836 BD cases and 2093 controls. No single-nucleotide polymorphisms (SNPs) achieved significance in these new samples; however, combining new and previously reported SCZ samples (2111 SCZ and 2535 controls) revealed a genome-wide significant association in the major histocompatibility complex (MHC) region (rs886424, P=4.54 × 10−8). Imputation using multiple reference panels and meta-analysis with the Psychiatric Genomics Consortium SCZ results underscored the broad, significant association in the MHC region in the full SCZ sample. We evaluated the role of copy number variants (CNVs) in these subjects. As in prior reports, deletions were enriched in SCZ, but not BD cases compared with controls. Singleton deletions were more frequent in both case groups compared with controls (SCZ: P=0.003, BD: P=0.013), whereas the largest CNVs (>500 kb) were significantly enriched only in SCZ cases (P=0.0035). Two CNVs with previously reported SCZ associations were also overrepresented in this SCZ sample: 16p11.2 duplications (P=0.0035) and 22q11 deletions (P=0.03). These results reinforce prior reports of significant MHC and CNV associations in SCZ, but not BD.


Biological Psychiatry | 2014

The penetrance of copy number variations for schizophrenia and developmental delay.

George Kirov; Elliott Rees; James Tynan Rhys Walters; Valentina Escott-Price; Lyudmila Georgieva; Alexander Richards; Gerwyn Davies; Sophie E. Legge; Jennifer L. Moran; Steven A. McCarroll; Michael C. O’Donovan; Michael John Owen

BACKGROUND Several recurrent copy number variants (CNVs) have been shown to increase the risk of developing schizophrenia (SCZ), developmental delay (DD), autism spectrum disorders (ASD), and various congenital malformations (CM). Their penetrance for SCZ has been estimated to be modest. However, comparisons between their penetrance for SCZ or DD/ASD/CM, or estimates of the total penetrance for any of these disorders have not yet been made. METHODS We use data from the largest available studies on SCZ and DD/ASD/CM, including a new sample of 6882 cases and 6316 controls, to estimate the frequencies of 70 implicated CNVs in carriers with these disorders, healthy control subjects, and the general population. On the basis of these frequencies, we estimate their penetrance. We also estimate the strength of the selection pressure against CNVs and correlate this against their overall penetrance. RESULTS The rates of nearly all CNVs are higher in DD/ASD/CM compared with SCZ. The penetrance of CNVs is at least several times higher for the development of a disorder from the group of DD/ASD/CM. The overall penetrance of SCZ-associated CNVs for developing any disorder is high, ranging between 10.6% and 100%. CONCLUSIONS CNVs associated with SCZ have high pathogenicity. The majority of the increased risk conferred by CNVs is toward the development of an earlier-onset disorder, such as DD/ASD/CM, rather than SCZ. The penetrance of CNVs correlates strongly with their selection coefficients. The improved estimates of penetrance will provide crucial information for genetic counselling.


Molecular Psychiatry | 2014

Copy number variation in schizophrenia in Sweden

Jin P. Szatkiewicz; Colm O'Dushlaine; Guanhua Chen; Jennifer L. Moran; Benjamin M. Neale; Menachem Fromer; Douglas M. Ruderfer; Susanne Akterin; Sarah E. Bergen; Anna K. Kähler; Patrik K. E. Magnusson; Y. Kim; James J. Crowley; Elliott Rees; George Kirov; Michael Conlon O'Donovan; Michael John Owen; James Tynan Rhys Walters; Edward M. Scolnick; Pamela Sklar; Shaun Purcell; Christina M. Hultman; Steven A. McCarroll; Patrick F. Sullivan

Schizophrenia (SCZ) is a highly heritable neuropsychiatric disorder of complex genetic etiology. Previous genome-wide surveys have revealed a greater burden of large, rare copy number variations (CNVs) in SCZ cases and identified multiple rare recurrent CNVs that increase risk of SCZ although with incomplete penetrance and pleiotropic effects. Identification of additional recurrent CNVs and biological pathways enriched for SCZ CNVs requires greater sample sizes. We conducted a genome-wide survey for CNVs associated with SCZ using a Swedish national sample (4719 cases and 5917 controls). High-confidence CNV calls were generated using genotyping array intensity data, and their effect on risk of SCZ was measured. Our data confirm increased burden of large, rare CNVs in SCZ cases as well as significant associations for recurrent 16p11.2 duplications, 22q11.2 deletions and 3q29 deletions. We report a novel association for 17q12 duplications (odds ratio=4.16, P=0.018), previously associated with autism and mental retardation but not SCZ. Intriguingly, gene set association analyses implicate biological pathways previously associated with SCZ through common variation and exome sequencing (calcium channel signaling and binding partners of the fragile X mental retardation protein). We found significantly increased burden of the largest CNVs (>500 kb) in genes present in the postsynaptic density, in genomic regions implicated via SCZ genome-wide association studies and in gene products localized to mitochondria and cytoplasm. Our findings suggest that multiple lines of genomic inquiry—genome-wide screens for CNVs, common variation and exonic variation—are converging on similar sets of pathways and/or genes.

Collaboration


Dive into the Jennifer L. Moran's collaboration.

Top Co-Authors

Avatar

Pamela Sklar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Shaun Purcell

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

David R. Beier

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas M. Ruderfer

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Patrick F. Sullivan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Menachem Fromer

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K D Chambert

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge