Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer L. Nemhauser is active.

Publication


Featured researches published by Jennifer L. Nemhauser.


Cell | 2006

Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses

Jennifer L. Nemhauser; Fangxin Hong; Joanne Chory

Small-molecule hormones govern every aspect of the biology of plants. Many processes, such as growth, are regulated in similar ways by multiple hormones, and recent studies have revealed extensive crosstalk among different hormonal signaling pathways. These results have led to the proposal that a common set of signaling components may integrate inputs from multiple hormones to regulate growth. In this study, we tested this proposal by asking whether different hormones converge on a common set of transcriptional targets in Arabidopsis seedlings. Using publicly available microarray data, we analyzed the transcriptional effects of seven hormones, including abscisic acid, gibberellin, auxin, ethylene, cytokinin, brassinosteroid, and jasmonate. A high-sensitivity analysis revealed a surprisingly low number of common target genes. Instead, different hormones appear to regulate distinct members of protein families. We conclude that there is not a core transcriptional growth-regulatory module in young Arabidopsis seedlings.


Bioinformatics | 2006

RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis

Fangxin Hong; Rainer Breitling; Connor McEntee; Ben S. Wittner; Jennifer L. Nemhauser; Joanne Chory

UNLABELLED While meta-analysis provides a powerful tool for analyzing microarray experiments by combining data from multiple studies, it presents unique computational challenges. The Bioconductor package RankProd provides a new and intuitive tool for this purpose in detecting differentially expressed genes under two experimental conditions. The package modifies and extends the rank product method proposed by Breitling et al., [(2004) FEBS Lett., 573, 83-92] to integrate multiple microarray studies from different laboratories and/or platforms. It offers several advantages over t-test based methods and accepts pre-processed expression datasets produced from a wide variety of platforms. The significance of the detection is assessed by a non-parametric permutation test, and the associated P-value and false discovery rate (FDR) are included in the output alongside the genes that are detected by user-defined criteria. A visualization plot is provided to view actual expression levels for each gene with estimated significance measurements. AVAILABILITY RankProd is available at Bioconductor http://www.bioconductor.org. A web-based interface will soon be available at http://cactus.salk.edu/RankProd


PLOS Biology | 2004

Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis

Jennifer L. Nemhauser; Todd C. Mockler; Joanne Chory

How growth regulators provoke context-specific signals is a fundamental question in developmental biology. In plants, both auxin and brassinosteroids (BRs) promote cell expansion, and it was thought that they activated this process through independent mechanisms. In this work, we describe a shared auxin:BR pathway required for seedling growth. Genetic, physiological, and genomic analyses demonstrate that response from one pathway requires the function of the other, and that this interdependence does not act at the level of hormone biosynthetic control. Increased auxin levels saturate the BR-stimulated growth response and greatly reduce BR effects on gene expression. Integration of these two pathways is downstream from BES1 and Aux/IAA proteins, the last known regulatory factors acting downstream of each hormone, and is likely to occur directly on the promoters of auxin:BR target genes. We have developed a new approach to identify potential regulatory elements acting in each hormone pathway, as well as in the shared auxin:BR pathway. We show that one element highly overrepresented in the promoters of auxin- and BR-induced genes is responsive to both hormones and requires BR biosynthesis for normal expression. This work fundamentally alters our view of BR and auxin signaling and describes a powerful new approach to identify regulatory elements required for response to specific stimuli.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2

Grégory Vert; Cristina L. Walcher; Joanne Chory; Jennifer L. Nemhauser

Plant form is shaped by a complex network of intrinsic and extrinsic signals. Light-directed growth of seedlings (photomorphogenesis) depends on the coordination of several hormone signals, including brassinosteroids (BRs) and auxin. Although the close relationship between BRs and auxin has been widely reported, the molecular mechanism for combinatorial control of shared target genes has remained elusive. Here we demonstrate that BRs synergistically increase seedling sensitivity to auxin and show that combined treatment with both hormones can increase the magnitude and duration of gene expression. Moreover, we describe a direct connection between the BR-regulated BIN2 kinase and ARF2, a member of the Auxin Response Factor family of transcriptional regulators. Phosphorylation by BIN2 results in loss of ARF2 DNA binding and repression activities. arf2 mutants are less sensitive to changes in endogenous BR levels, whereas a large proportion of genes affected in an arf2 background are returned to near wild-type levels by altering BR biosynthesis. Together, these data suggest a model where BIN2 increases expression of auxin-induced genes by directly inactivating repressor ARFs, leading to synergistic increases in transcription.


Cell Reports | 2014

Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana.

Alessandra M Sullivan; Andrej A Arsovski; Janne Lempe; Kerry L. Bubb; Matthew T. Weirauch; Peter J. Sabo; Richard Sandstrom; Robert E. Thurman; Shane Neph; Alex Reynolds; Andrew B. Stergachis; Benjamin Vernot; Audra K. Johnson; Eric Haugen; Shawn T. Sullivan; Agnieszka Thompson; Fidencio V. Neri; Molly Weaver; Morgan Diegel; Sanie Mnaimneh; Ally Yang; Timothy R. Hughes; Jennifer L. Nemhauser; Christine Queitsch; John A. Stamatoyannopoulos

Our understanding of gene regulation in plants is constrained by our limited knowledge of plant cis-regulatory DNA and its dynamics. We mapped DNase I hypersensitive sites (DHSs) in A. thaliana seedlings and used genomic footprinting to delineate ∼ 700,000 sites of in vivo transcription factor (TF) occupancy at nucleotide resolution. We show that variation associated with 72 diverse quantitative phenotypes localizes within DHSs. TF footprints encode an extensive cis-regulatory lexicon subject to recent evolutionary pressures, and widespread TF binding within exons may have shaped codon usage patterns. The architecture of A. thaliana TF regulatory networks is strikingly similar to that of animals in spite of diverged regulatory repertoires. We analyzed regulatory landscape dynamics during heat shock and photomorphogenesis, disclosing thousands of environmentally sensitive elements and enabling mapping of key TF regulatory circuits underlying these fundamental responses. Our results provide an extensive resource for the study of A. thaliana gene regulation and functional biology.


Plant Physiology | 2012

A synthetic approach reveals extensive tunability of auxin signaling

Kyle A. Havens; Jessica M. Guseman; Seunghee S. Jang; Edith Pierre-Jerome; Nick Bolten; Eric Klavins; Jennifer L. Nemhauser

Explaining how the small molecule auxin triggers diverse yet specific responses is a long-standing challenge in plant biology. An essential step in auxin response is the degradation of Auxin/Indole-3-Acetic Acid (Aux/IAA, referred to hereafter as IAA) repressor proteins through interaction with auxin receptors. To systematically characterize diversity in degradation behaviors among IAA|receptor pairs, we engineered auxin-induced degradation of plant IAA proteins in yeast (Saccharomyces cerevisiae). We found that IAA degradation dynamics vary widely, depending on which receptor is present, and are not encoded solely by the degron-containing domain II. To facilitate this and future studies, we identified a mathematical model able to quantitatively describe IAA degradation behavior in a single parameter. Together, our results demonstrate the remarkable tunability conferred by specific configurations of the auxin response pathway.


Plant Physiology | 2012

An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation

Jodi L. Stewart Lilley; Christopher W. Gee; Ilkka Sairanen; Karin Ljung; Jennifer L. Nemhauser

The local environment has a substantial impact on early seedling development. Applying excess carbon in the form of sucrose is known to alter both the timing and duration of seedling growth. Here, we show that sucrose changes growth patterns by increasing auxin levels and rootward auxin transport in Arabidopsis (Arabidopsis thaliana). Sucrose likely interacts with an endogenous carbon-sensing pathway via the PHYTOCHROME-INTERACTING FACTOR (PIF) family of transcription factors, as plants grown in elevated carbon dioxide showed the same PIF-dependent growth promotion. Overexpression of PIF5 was sufficient to suppress photosynthetic rate, enhance response to elevated carbon dioxide, and prolong seedling survival in nitrogen-limiting conditions. Thus, PIF transcription factors integrate growth with metabolic demands and thereby facilitate functional equilibrium during photomorphogenesis.


PLOS ONE | 2011

PIF genes mediate the effect of sucrose on seedling growth dynamics.

Jodi L. Stewart; Julin N. Maloof; Jennifer L. Nemhauser

As photoautotrophs, plants can use both the form and amount of fixed carbon as a measure of the light environment. In this study, we used a variety of approaches to elucidate the role of exogenous sucrose in modifying seedling growth dynamics. In addition to its known effects on germination, high-resolution temporal analysis revealed that sucrose could extend the number of days plants exhibited rapid hypocotyl elongation, leading to dramatic increases in ultimate seedling height. In addition, sucrose changed the timing of daily growth maxima, demonstrating that diel growth dynamics are more plastic than previously suspected. Sucrose-dependent growth promotion required function of multiple phytochrome-interacting factors (PIFs), and overexpression of PIF5 led to growth dynamics similar to plants exposed to sucrose. Consistent with this result, sucrose was found to increase levels of PIF5 protein. PIFs have well-established roles as integrators of response to light levels, time of day and phytohormone signaling. Our findings strongly suggest that carbon availability can modify the known photomorphogenetic signaling network.


Plant Physiology | 2012

Bipartite promoter element required for auxin response

Cristina L. Walcher; Jennifer L. Nemhauser

Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin and brassinosteroid early response gene in Arabidopsis (Arabidopsis thaliana). After identifying a minimal region sufficient for auxin response, we targeted predicted cis-regulatory elements contained within this sequence and found a critical subset required for hormone response. Specifically, reporter sensitivity to auxin treatment required two elements: a Hormone Up at Dawn (HUD)-type E-box and an AuxRE-related TGTCT element. Reporter response to brassinosteroid treatment relied on the same two elements. Consistent with these findings, the transcription factors BRASSINOSTEROID INSENSITIVE1-EMS SUPPESSOR1 and MONOPTEROS (MP)/ AUXIN RESPONSE FACTOR5 (ARF5) showed enhanced binding to the critical promoter region containing these elements. Treatment with auxin or brassinosteroids could enhance binding of either transcription factor, and brassinosteroid enhancement of MP/ARF5 binding required an intact HUD element. Conservation of clustered HUD elements and AuxRE-related sequences in promoters of putative SAUR15 orthologs in a number of flowering plant species, in combination with evidence for statistically significant clustering of these elements across all Arabidopsis promoters, provided further evidence of the functional importance of coordinated transcription factor binding.


New Phytologist | 2016

50 years of Arabidopsis research: highlights and future directions

Nicholas J. Provart; Jose M. Alonso; Sarah M. Assmann; Dominique C. Bergmann; Siobhan M. Brady; Jelena Brkljacic; John Browse; Clint Chapple; Vincent Colot; Sean R. Cutler; Jeff Dangl; David W. Ehrhardt; Joanna Friesner; Wolf B. Frommer; Erich Grotewold; Elliot M. Meyerowitz; Jennifer L. Nemhauser; Magnus Nordborg; John Shanklin; Chris Somerville; Mark Stitt; Keiko U. Torii; Jamie Waese; Doris Wagner; Peter McCourt

922 I. 922 II. 922 III. 925 IV. 925 V. 926 VI. 927 VII. 928 VIII. 929 IX. 930 X. 931 XI. 932 XII. 933 XIII. Natural variation and genome-wide association studies 934 XIV. 934 XV. 935 XVI. 936 XVII. 937 937 References 937 SUMMARY: The year 2014 marked the 25(th) International Conference on Arabidopsis Research. In the 50 yr since the first International Conference on Arabidopsis Research, held in 1965 in Göttingen, Germany, > 54 000 papers that mention Arabidopsis thaliana in the title, abstract or keywords have been published. We present herein a citational network analysis of these papers, and touch on some of the important discoveries in plant biology that have been made in this powerful model system, and highlight how these discoveries have then had an impact in crop species. We also look to the future, highlighting some outstanding questions that can be readily addressed in Arabidopsis. Topics that are discussed include Arabidopsis reverse genetic resources, stock centers, databases and online tools, cell biology, development, hormones, plant immunity, signaling in response to abiotic stress, transporters, biosynthesis of cells walls and macromolecules such as starch and lipids, epigenetics and epigenomics, genome-wide association studies and natural variation, gene regulatory networks, modeling and systems biology, and synthetic biology.

Collaboration


Dive into the Jennifer L. Nemhauser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Klavins

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Joanne Chory

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge