Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer L. Strande is active.

Publication


Featured researches published by Jennifer L. Strande.


Basic Research in Cardiology | 2007

SCH 79797, a selective PAR1 antagonist, limits myocardial ischemia/reperfusion injury in rat hearts

Jennifer L. Strande; Anna Hsu; Jidong Su; Xiangping Fu; Garrett J. Gross; John E. Baker

Myocardial ischemia/reperfusion (I/R) injury is partly mediated by thrombin. In support, the functional inhibition of thrombin has been shown to decrease infarct size after I/R. Several cellular responses to thrombin are mediated by a G-protein coupled protease-activated receptor 1 (PAR1).However, the role of PAR1 in myocardial I/R injury has not been well characterized. Therefore, we hypothesized that PAR1 inhibition will reduce the amount of myocardial I/R injury. After we detected the presence of PAR1 mRNA and protein in the rat heart by RT-PCR and immunoblot analysis,we assessed the potential protective role of SCH 79797, a selective PAR1 antagonist, in two rat models of myocardial I/R injury. SCH 79797 treatment immediately before or during ischemia reduced myocardial necrosis following I/R in the intact rat heart. This response was dose-dependent with the optimal dose being 25 μg/kg IV. Likewise, SCH 79797 treatment before ischemia in the isolated heart model reduced infarct size and increased ventricular recovery following I/R in the isolated heart model with an optimal concentration of 1 μM. This reduction was abolished by a PAR1 selective agonist. SCH 79797-induced resistance to myocardial ischemia was abolished by wortmannin, an inhibitor of PI3 kinase; L-NMA, a NOS inhibitor; and glibenclamide, a nonselective KATP channel blocker. PAR1 activating peptide,wortmannin, L-NMA and glibenclamide alone had no effect on functional recovery or infarct size. A single treatment of SCH 79797 administered prior to or during ischemia confers immediate cardioprotection suggesting a potential therapeutic role of PAR1 antagonist in the treatment of injury resulting from myocardial ischemia and reperfusion.


International Journal of Radiation Biology | 2009

10 GY TOTAL BODY IRRADIATION INCREASES RISK OF CORONARY SCLEROSIS, DEGENERATION OF HEART STRUCTURE AND FUNCTION IN A RAT MODEL

John E. Baker; Brian L. Fish; Jidong Su; Steven T. Haworth; Jennifer L. Strande; Richard A. Komorowski; Raymond Q. Migrino; Anil Doppalapudi; Leanne Harmann; X. Allen Li; J.W. Hopewell; John E. Moulder

Purpose: To determine the impact of 10 Gy total body irradiation (TBI) or local thorax irradiation, a dose relevant to a radiological terrorist threat, on lipid and liver profile, coronary microvasculature and ventricular function. Materials and methods: WAG/RijCmcr rats received 10 Gy TBI followed by bone marrow transplantation, or 10 Gy local thorax irradiation. Age-matched, non-irradiated rats served as controls. The lipid profile and liver enzymes, coronary vessel morphology, nitric oxide synthase (NOS) isoforms, protease activated receptor (PAR)-1 expression and fibrinogen levels were compared. Two-dimensional strain echocardiography assessed global radial and circumferential strain on the heart. Results: TBI resulted in a sustained increase in total and low density lipoprotein (LDL) cholesterol (190 ± 8 vs. 58 ± 6; 82 ± 8 vs. 13 ± 3 mg/dl, respectively). The density of small coronary arterioles was decreased by 32%. Histology revealed complete blockage of some vessels while cardiomyocytes remained normal. TBI resulted in cellular peri-arterial fibrosis whereas control hearts had symmetrical penetrating vessels with less collagen and fibroblasts. TBI resulted in a 32 ± 4% and 28 ± 3% decrease in endothelial NOS and inducible NOS protein, respectively, and a 21 ± 4% and 35 ± 5% increase in fibrinogen and PAR-1 protein respectively, after 120 days. TBI reduced radial strain (19 ± 8 vs. 46 ± 7%) and circumferential strain (−8 ± 3 vs. −15 ± 3%) compared to controls. Thorax-only irradiation produced no changes over the same time frame. Conclusions: TBI with 10 Gy, a dose relevant to radiological terrorist threats, worsened lipid profile, injured coronary microvasculature, altered endothelial physiology and myocardial mechanics. These changes were not manifest with local thorax irradiation. Non-thoracic circulating factors may be promoting radiation-induced injury to the heart.


Stem Cell Research | 2014

Dystrophin-deficient cardiomyocytes derived from human urine: New biologic reagents for drug discovery

Xuan Guan; David L. Mack; Claudia M. Moreno; Jennifer L. Strande; Julie Mathieu; Yingai Shi; Chad D. Markert; Zejing Wang; Guihua Liu; Michael W. Lawlor; Emily C. Moorefield; Tara N. Jones; James A. Fugate; Mark E. Furth; Charles E. Murry; Hannele Ruohola-Baker; Yuanyuan Zhang; Luis F. Santana; Martin K. Childers

The ability to extract somatic cells from a patient and reprogram them to pluripotency opens up new possibilities for personalized medicine. Induced pluripotent stem cells (iPSCs) have been employed to generate beating cardiomyocytes from a patients skin or blood cells. Here, iPSC methods were used to generate cardiomyocytes starting from the urine of a patient with Duchenne muscular dystrophy (DMD). Urine was chosen as a starting material because it contains adult stem cells called urine-derived stem cells (USCs). USCs express the canonical reprogramming factors c-myc and klf4, and possess high telomerase activity. Pluripotency of urine-derived iPSC clones was confirmed by immunocytochemistry, RT-PCR and teratoma formation. Urine-derived iPSC clones generated from healthy volunteers and a DMD patient were differentiated into beating cardiomyocytes using a series of small molecules in monolayer culture. Results indicate that cardiomyocytes retain the DMD patients dystrophin mutation. Physiological assays suggest that dystrophin-deficient cardiomyocytes possess phenotypic differences from normal cardiomyocytes. These results demonstrate the feasibility of generating cardiomyocytes from a urine sample and that urine-derived cardiomyocytes retain characteristic features that might be further exploited for mechanistic studies and drug discovery.


Journal of Pharmacology and Experimental Therapeutics | 2007

Inhibiting Protease-Activated Receptor 4 Limits Myocardial Ischemia/Reperfusion Injury in Rat Hearts by Unmasking Adenosine Signaling

Jennifer L. Strande; Anna Hsu; Jidong Su; Xiangping Fu; Garrett J. Gross; John E. Baker

Harnessing endogenous cardioprotectants is a novel therapeutic strategy to combat ischemia/reperfusion (I/R) injury. Thrombin causes I/R injury, whereas exogenous adenosine prevents I/R injury. We hypothesized that blocking thrombin receptor activation with a protease-activated receptor (PAR) 4 antagonist would unmask the cardioprotective effects of endogenous adenosine. The protective role of two structurally unrelated PAR4 antagonists, trans-cinnamoyl-YPGKF-amide (tc-Y-NH2) and palmitoyl-SGRRYGHALR-amide (P4pal10), were evaluated in two rat models of myocardial I/R injury. P4pal10 (10 μg/kg) treatment before ischemia significantly decreased infarct size (IS) by 31, 21, and 19% when given before, during, and after ischemia in the in vivo model. tc-Y-NH2 (5 μM) treatment before ischemia decreased IS by 51% in the in vitro model and increased recovery of ventricular function by 26%. To assess whether the cardioprotective effects of PAR4 blockade were due to endogenous adenosine, isolated hearts were treated with a nonselective adenosine receptor blocker, 8-sulfaphenyltheophylline (8-SPT), and tc-Y-NH2 before ischemia. 8-SPT abolished the protective effects of tc-Y-NH2 but did not affect IS when given alone. Adenosine-mediated survival pathways were then explored. The cardioprotective effects of tc-Y-NH2 were abolished by inhibition of Akt (wortmannin), extracellular signal-regulated kinase 1/2 [PD98059 (2′-amino-3′-methoxyflavone)], nitric-oxide synthase [NG-monomethyl-l-arginine (l-NMA)], and KATP channels (glibenclamide). PD98059, l-NMA, and glibenclamide alone had no effect on cardioprotection in vitro. Furthermore, inhibition of mitochondrial KATP channels [5-hydroxydecanoic acid (5-HD)] and sarcolemmal KATP channels (sodium (5-(2-(5-chloro-2-methoxybenzamido)ethyl)-2-methoxyphenylsulfonyl)(methylcarbamothioyl)amide; HMR 1098) abolished P4pal10-induced cardioprotection in vivo. Thrombin receptor blockade by PAR4 inhibition provides protection against injury from myocardial I/R by unmasking adenosine receptor signaling and supports the hypothesis of a coupling between thrombin receptors and adenosine receptors.


Journal of Cardiovascular Pharmacology and Therapeutics | 2013

Protease-Activated Receptor 1 Inhibition by SCH79797 Attenuates Left Ventricular Remodeling and Profibrotic Activities of Cardiac Fibroblasts

Dmitry L. Sonin; Tetsuro Wakatsuki; Kasi V. Routhu; Leanne Harmann; Matthew Petersen; Jennifer Meyer; Jennifer L. Strande

Purpose: Fibroblast activity promotes adverse left ventricular (LV) remodeling that underlies the development of ischemic cardiomyopathy. Transforming growth factor-β (TGF-β) is a potent stimulus for fibrosis, and the extracellular signal-regulated kinases(ERK) 1/2 pathway also contributes to the fibrotic response. The thrombin receptor, protease-activated receptor 1 (PAR1), has been shown to play an important role in the excessive fibrosis in different tissues. The aim of this study was to investigate the influence of a PAR1 inhibitor, SCH79797, on cardiac fibrosis, tissue stiffness and postinfarction remodeling, and effects of PAR1 inhibition on thrombin-induced TGF-β and (ERK) 1/2 activities in cardiac fibroblasts. Methods: We used a rat model of myocardial ischemia–reperfusion injury, isolated cardiac fibroblasts, and 3-dimensional (3D) cardiac tissue models fabricated to ascertain the contribution of PAR1 activation on cardiac fibrosis and LV remodeling. Results: The PAR1 inhibitor attenuated LV dilation and improved LV systolic function of the reperfused myocardium at 28 days. This improvement was associated with a nonsignificant decrease in scar size (%LV) from 23 ± % in the control group (n = 10) to 16% ± 5.5% in the treated group (n = 9; P = .052). In the short term, the PAR1 inhibitor did not rescue infarct size or LV systolic function after 3 days. The PAR1 inhibition abolished thrombin-mediated ERK1/2 phosphorylation, TGF-β and type I procollagen production, matrix metalloproteinase-2/9 activation, myofibroblasts transformation in vitro, and abrogated the remodeling of 3D tissues induced by chronic thrombin treatment. Conclusion: These studies suggest PAR1 inhibition initiated after ischemic injury attenuates adverse LV remodeling through late-stage antifibrotic events.


Journal of Inflammation | 2009

Thrombin increases inflammatory cytokine and angiogenic growth factor secretion in human adipose cells in vitro

Jennifer L. Strande; Shane A. Phillips

BackgroundAbdominal obesity is associated with pro-thrombotic and inflammatory states. Therefore, the purpose of this study was to examine the expression of thrombin receptors (PAR1 and PAR4) human adipose tissue and whether thrombin stimulates an inflammatory cytokine and growth factor profile in human adipose tissue.MethodsHuman adipose tissue, isolated preadipocytes and differentiated adipocytes were used in this study. PAR1 and PAR4 mRNA and protein were detected by RT-PCR and immunoblot analysis in both adipose tissue and adipose microvessels. In separate studies, IL-1β, IL-6, MCP-1, TNF-α, IL-10, FGF-2, VEGF, and PDGF production were measured from adipose tissue (n = 5), adipocytes (n = 5), and preadipocytes (n = 3) supernatants with and without thrombin (1 or 10 U/ml; 24 hrs) treatment.ResultsThrombin increased cytokine secretion of IL-1β, IL-6, MCP-1 and TNF-α and growth factor secretion of VEGF from adipocytes along with MCP-1 and VEGF from preadipocytes. The direct thrombin inhibitor lepirudin given in conjunction with thrombin prevented the thrombin-mediated increase in cytokine and growth factor secretion.ConclusionHere we show that thrombin PAR1 and PAR4 receptors are present and that thrombin stimulates inflammatory cytokine generation and growth factor release in human adipose tissue and cells in vitro. These data suggest that thrombin may represent a molecular link between obesity and associated inflammation.


Cardiovascular Research | 2009

Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury

Jennifer L. Strande; Michael E. Widlansky; Nikos E. Tsopanoglou; Jidong Su; Jingli Wang; Anna Hsu; Kasi V. Routhu; John E. Baker

AIMS Thrombin activates protease-activated receptor 1 by proteolytic cleavage of the N-terminus. Although much research has focused on the activated receptor, little is known about the 41-amino acid N-terminal peptide (parstatin). We hypothesized that parstatin would protect the heart against ischaemia-reperfusion injury. METHODS AND RESULTS We assessed the protective role of parstatin in an in vivo and in vitro rat model of myocardial ischaemia-reperfusion injury. Parstatin treatment before, during, and after ischaemia decreased infarct size by 26%, 23%, and 18%, respectively, in an in vivo model of ischaemia-reperfusion injury. Parstatin treatment immediately before ischaemia decreased infarct size by 65% and increased recovery in ventricular function by 23% in an in vitro model. We then assessed whether parstatin induced cardioprotection by activation of a Gi-protein-dependent pathway. Gi-protein inactivation by pertussis toxin completely abolished the cardioprotective effects. The cardioprotective effects were also abolished by inhibition of nitric oxide synthase (NOS), extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), and K(ATP) channels in vitro. Furthermore, parstatin increased coronary flow and decreased perfusion pressure in the isolated heart. The vasodilatory properties of parstatin were confirmed in rat coronary arterioles. CONCLUSION A single treatment of parstatin administered prior to ischaemia confers immediate cardioprotection by recruiting the Gi-protein activation pathway including p38 MAPK, ERK1/2, NOS, and K(ATP) channels. Parstatin exerts effects on both the cardiomyocytes and the coronary circulation to induce cardioprotection. This suggests a potential therapeutic role of parstatin in the treatment of cardiac injury resulting from ischaemia and reperfusion.


Journal of Pharmacology and Experimental Therapeutics | 2010

Parstatin(1-26): The Putative Signal Peptide of Protease-Activated Receptor 1 Confers Potent Protection from Myocardial Ischemia-Reperfusion Injury

Kasi V. Routhu; Nikos E. Tsopanoglou; Jennifer L. Strande

Parstatin, the N-terminal 41-amino-acid peptide cleaved by thrombin from the protease-activated receptor 1, protects against rat myocardial ischemia and reperfusion injury. In this study, we determined that the parstatin fragment 1-26, the putative signal peptide of protease-activated receptor 1, contains the functional domain of parstatin. We assessed a synthesized parstatin(1-26) peptide in an in vivo rat model of myocardial regional ischemia-reperfusion injury (n = 6/group). Infarct size in control rat hearts was 58 ± 1% area at risk. Parstatin(1-26) was able to reduce infarct size to 13 ± 1% (P < 0.001) and 22 ± 1% area at risk (P < 0.01) when given before or after reperfusion. The infarct-sparing effects of parstatin(1-26) were abolished by inhibition of Gi proteins (pertussis toxin), phosphoinositide 3-kinase/Akt (wortmannin), nitric-oxide synthase (NOS; NG-monomethyl-l-arginine), soluble guanylyl cyclase [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ)], and sarcolemmal and mitochondrial KATP channels [glibenclamide, 5-hydroxydecanoic acid, and sodium (5-(2-(5-chloro-2-methoxybenzamido)ethyl)-2-methoxyphenylsulfonyl) (methylcarbamothioyl)amide (HMR 1098)]. Parstatin(1-26) cardioprotection was also abolished by atractyloside, a mitochondrial permeability transition pore (mPTP) opener. The inhibitors and opener alone had no effect on infarct size. Furthermore, preischemic treatment with parstatin(1-26) increased Akt and endothelial NOS phosphorylation at the time of reperfusion. After a 120-min reperfusion, parstatin(1-26) increased nitric oxide levels (12 ± 0.4 to 17 ± 0.9 mmol/g tissue) and cyclic GMP levels (87 ± 21 to 395 ± 36 pmol/g tissue). Parstatin(1-26) treatment either before or after ischemia results in an extremely efficacious protection against ischemia-reperfusion injury that depends on a Gi protein-mediated pathway involving mPTP, the end effector of the preconditioning pathway. This suggests that parstatin(1-26) has a potential therapeutic role in the treatment of ischemia and reperfusion injury.


Journal of Cardiovascular Pharmacology and Therapeutics | 2016

Nicorandil, a Nitric Oxide Donor and ATP-Sensitive Potassium Channel Opener, Protects Against Dystrophin-Deficient Cardiomyopathy

Muhammad Z. Afzal; Melanie Reiter; Courtney Gastonguay; Jered V. McGivern; Xuan Guan; Zhi Dong Ge; David L. Mack; Martin K. Childers; Allison D. Ebert; Jennifer L. Strande

Background: Dystrophin-deficient cardiomyopathy is a growing clinical problem without targeted treatments. We investigated whether nicorandil promotes cardioprotection in human dystrophin-deficient induced pluripotent stem cell (iPSC)-derived cardiomyocytes and the muscular dystrophy mdx mouse heart. Methods and Results: Dystrophin-deficient iPSC-derived cardiomyocytes had decreased levels of endothelial nitric oxide synthase and neuronal nitric oxide synthase. The dystrophin-deficient cardiomyocytes had increased cell injury and death after 2 hours of stress and recovery. This was associated with increased levels of reactive oxygen species and dissipation of the mitochondrial membrane potential. Nicorandil pretreatment was able to abolish these stress-induced changes through a mechanism that involved the nitric oxide–cyclic guanosine monophosphate pathway and mitochondrial adenosine triphosphate-sensitive potassium channels. The increased reactive oxygen species levels in the dystrophin-deficient cardiomyocytes were associated with diminished expression of select antioxidant genes and increased activity of xanthine oxidase. Furthermore, nicorandil was found to improve the restoration of cardiac function after ischemia and reperfusion in the isolated mdx mouse heart. Conclusion: Nicorandil protects against stress-induced cell death in dystrophin-deficient cardiomyocytes and preserves cardiac function in the mdx mouse heart subjected to ischemia and reperfusion injury. This suggests a potential therapeutic role for nicorandil in dystrophin-deficient cardiomyopathy.


Biology Open | 2015

Sucrose non-fermenting related kinase enzyme is essential for cardiac metabolism.

Stephanie M. Cossette; Adam Gastonguay; Xiaoping Bao; Alexandra Lerch-Gaggl; Ling Zhong; Leanne Harmann; Christopher Koceja; Robert Q. Miao; Padmanabhan Vakeel; Changzoon Chun; Keguo Li; Jamie Foeckler; Michelle Bordas; Hartmut Weiler; Jennifer L. Strande; Sean P. Palecek; Ramani Ramchandran

ABSTRACT In this study, we have identified a novel member of the AMPK family, namely Sucrose non-fermenting related kinase (Snrk), that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart, and brain, and in cell types such as endothelial cells, smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts, and die at postnatal day 0. Microarray analysis of embryonic day 17.5 Snrk hearts, and blood profile of neonates display defect in lipid metabolic pathways. SNRK knockdown CMs showed altered phospho-acetyl-coA carboxylase and phospho-AMPK levels similar to global and endothelial conditional KO mouse. Finally, adult cardiac conditional KO mouse displays severe cardiac functional defects and lethality. Our results suggest that Snrk is essential for maintaining cardiac metabolic homeostasis, and shows an autonomous role for SNRK during mammalian development.

Collaboration


Dive into the Jennifer L. Strande's collaboration.

Top Co-Authors

Avatar

John E. Baker

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Anna Hsu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Leanne Harmann

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jidong Su

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Kasi V. Routhu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Muhammad Z. Afzal

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Brian L. Fish

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Garrett J. Gross

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Xiangping Fu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

David L. Mack

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge