Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer L. Troyer is active.

Publication


Featured researches published by Jennifer L. Troyer.


BMC Genomics | 2010

Accounting for multiple comparisons in a genome-wide association study (GWAS)

Randall C. Johnson; George W. Nelson; Jennifer L. Troyer; James A. Lautenberger; Bailey Kessing; Cheryl A. Winkler; Stephen J. O'Brien

BackgroundAs we enter an era when testing millions of SNPs in a single gene association study will become the standard, consideration of multiple comparisons is an essential part of determining statistical significance. Bonferroni adjustments can be made but are conservative due to the preponderance of linkage disequilibrium (LD) between genetic markers, and permutation testing is not always a viable option. Three major classes of corrections have been proposed to correct the dependent nature of genetic data in Bonferroni adjustments: permutation testing and related alternatives, principal components analysis (PCA), and analysis of blocks of LD across the genome. We consider seven implementations of these commonly used methods using data from 1514 European American participants genotyped for 700,078 SNPs in a GWAS for AIDS.ResultsA Bonferroni correction using the number of LD blocks found by the three algorithms implemented by Haploview resulted in an insufficiently conservative threshold, corresponding to a genome-wide significance level of α = 0.15 - 0.20. We observed a moderate increase in power when using PRESTO, SLIDE, and simpleℳ when compared with traditional Bonferroni methods for population data genotyped on the Affymetrix 6.0 platform in European Americans (α = 0.05 thresholds between 1 × 10-7 and 7 × 10-8).ConclusionsCorrecting for the number of LD blocks resulted in an anti-conservative Bonferroni adjustment. SLIDE and simpleℳ are particularly useful when using a statistical test not handled in optimized permutation testing packages, and genome-wide corrected p-values using SLIDE, are much easier to interpret for consumers of GWAS studies.


Emerging Infectious Diseases | 2009

Genetics and Pathogenesis of Feline Infectious Peritonitis Virus

Meredith A. Brown; Jennifer L. Troyer; Jill Pecon-Slattery; Melody E. Roelke; Stephen J. O’Brien

Coronavirus sequence analyses demonstrate distinctive circulating strains in natural populations.


The Journal of Infectious Diseases | 2010

Multistage Genomewide Association Study Identifies a Locus at 1q41 Associated with Rate of HIV-1 Disease Progression to Clinical AIDS

Joshua T. Herbeck; Geoffrey S. Gottlieb; Cheryl A. Winkler; George W. Nelson; Ping An; Brandon Maust; Kim Wong; Jennifer L. Troyer; James J. Goedert; Bailey Kessing; Roger Detels; Steven M. Wolinsky; Jeremy J. Martinson; Susan Buchbinder; Gregory D. Kirk; Lisa Jacobson; Joseph B. Margolick; Richard A. Kaslow; Stephen J. O'Brien; James I. Mullins

BACKGROUND A mean of 9-10 years of human immunodeficiency virus type 1 (HIV-1) infection elapse before clinical AIDS develops in untreated persons, but this rate of disease progression varies substantially among individuals. To investigate host genetic determinants of the rate of progression to clinical AIDS, we performed a multistage genomewide association study. METHODS The discovery stage comprised 156 individuals from the Multicenter AIDS Cohort Study, enriched with rapid and long-term nonprogressors to increase statistical power. This was followed by replication tests of putatively associated genotypes in an independent population of 590 HIV-1-infected seroconverters. RESULTS Significant associations with delayed AIDS progression were observed in a haplotype located at 1q41, 36 kb upstream of PROX1 on chromosome 1 (relative hazard ratio, 0.69; Fishers combined P = 6.23 X 10(-7)). This association was replicated further in an analysis stratified by transmission mode, with the effect consistent in sexual or mucosal and parenteral transmission (relative hazard ratios, 0.72 and 0.63, respectively; combined P = 1.63 X 10(-6)). CONCLUSIONS This study identified and replicated a locus upstream of PROX1 that is associated with delayed progression to clinical AIDS. PROX1 is a negative regulator of interferon-gamma expression in T cells and also mitigates the advancement of vascular neoplasms, such as Kaposi sarcoma, a common AIDS-defining malignancy. This study adds to the cumulative polygenic host component that effectively regulates the progression to clinical AIDS among HIV-1-infected individuals, raising prospects for potential new avenues for therapy and improvements in AIDS prognosis.


Veterinary Immunology and Immunopathology | 2008

Evolution of feline immunodeficiency virus in Felidae: implications for human health and wildlife ecology.

Jill Pecon-Slattery; Jennifer L. Troyer; Warren E. Johnson; Stephen J. O'Brien

Genetic analyses of feline immunodeficiency viruses provide significant insights on the worldwide distribution and evolutionary history of this emerging pathogen. Large-scale screening of over 3000 samples from all species of Felidae indicates that at least some individuals from most species possess antibodies that cross react to FIV. Phylogenetic analyses of genetic variation in the pol-RT gene demonstrate that FIV lineages are species-specific and suggest that there has been a prolonged period of viral-host co-evolution. The clinical effects of FIV specific to species other than domestic cat are controversial. Comparative genomic analyses of all full-length FIV genomes confirmed that FIV is host specific. Recently sequenced lion subtype E is marginally more similar to Pallas cat FIV though env is more similar to that of domestic cat FIV, indicating a possible recombination between two divergent strains in the wild. Here we review global patterns of FIV seroprevalence and endemnicity, assess genetic differences within and between species-specific FIV strains, and interpret these with patterns of felid speciation to propose an ancestral origin of FIV in Africa followed by interspecies transmission and global dissemination to Eurasia and the Americas. Continued comparative genomic analyses of full-length FIV from all seropositive animals, along with whole genome sequence of host species, will greatly advance our understanding of the role of recombination, selection and adaptation in retroviral emergence.


PLOS Genetics | 2012

The Principal Genetic Determinants for Nasopharyngeal Carcinoma in China Involve the HLA Class I Antigen Recognition Groove

Minzhong Tang; James A. Lautenberger; Xiaojiang Gao; Efe Sezgin; Sher L. Hendrickson; Jennifer L. Troyer; Victor A. David; Li Guan; Carl McIntosh; Xiuchan Guo; Yuming Zheng; Jian Liao; Hong Deng; Michael Malasky; Bailey Kessing; Cheryl A. Winkler; Mary Carrington; Yi Zeng; Stephen J. O'Brien

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy facilitated by Epstein-Barr Virus infection. Here we resolve the major genetic influences for NPC incidence using a genome-wide association study (GWAS), independent cohort replication, and high-resolution molecular HLA class I gene typing including 4,055 study participants from the Guangxi Zhuang Autonomous Region and Guangdong province of southern China. We detect and replicate strong association signals involving SNPs, HLA alleles, and amino acid (aa) variants across the major histocompatibility complex-HLA-A, HLA –B, and HLA -C class I genes (PHLA-A-aa-site-62 = 7.4×10−29; P HLA-B-aa-site-116 = 6.5×10−19; P HLA-C-aa-site-156 = 6.8×10−8 respectively). Over 250 NPC-HLA associated variants within HLA were analyzed in concert to resolve separate and largely independent HLA-A, -B, and -C gene influences. Multivariate logistical regression analysis collapsed significant associations in adjacent genes spanning 500 kb (OR2H1, GABBR1, HLA-F, and HCG9) as proxies for peptide binding motifs carried by HLA- A*11:01. A similar analysis resolved an independent association signal driven by HLA-B*13:01, B*38:02, and B*55:02 alleles together. NPC resistance alleles carrying the strongly associated amino acid variants implicate specific class I peptide recognition motifs in HLA-A and -B peptide binding groove as conferring strong genetic influence on the development of NPC in China.


Journal of Virology | 2004

Patterns of Feline Immunodeficiency Virus Multiple Infection and Genome Divergence in a Free-Ranging Population of African Lions

Jennifer L. Troyer; Jill Pecon-Slattery; Melody E. Roelke; Lori Black; Craig Packer; Stephen J. O'Brien

ABSTRACT Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS-like immunodeficiency disease in domestic cats. Free-ranging lions, Panthera leo, carry a chronic species-specific strain of FIV, FIV-Ple, which so far has not been convincingly connected with immune pathology or mortality. FIV-Ple, harboring the three distinct strains A, B, and C defined by pol gene sequence divergences, is endemic in the large outbred population of lions in the Serengeti ecosystem in Tanzania. Here we describe the pattern of variation in the three FIV genes gag, pol-RT, and pol-RNase among lions within 13 prides to assess the occurrence of FIV infection and coinfection. Genome diversity within and among FIV-Ple strains is shown to be large, with strain divergence for each gene approaching genetic distances observed for FIV between different species of cats. Multiple in fections with two or three strains were found in 43% of the FIV-positive individuals based on pol-RT sequence analysis, which may suggest that antiviral immunity or interference evoked by one strain is not consistently protective against infection by a second. This comprehensive study of FIV-Ple in a free-ranging population of lions reveals a dynamic transmission of virus in a social species that has historically adapted to render the virus benign.


Journal of Virology | 2007

Frequent Transmission of Immunodeficiency Viruses among Bobcats and Pumas

Sam Franklin; Jennifer L. Troyer; Julie Terwee; Lisa M. Lyren; Walter M. Boyce; Seth P. D. Riley; Melody E. Roelke; Kevin R. Crooks; Sue VandeWoude

ABSTRACT With the exception of human immunodeficiency virus (HIV), which emerged in humans after cross-species transmissions of simian immunodeficiency viruses from nonhuman primates, immunodeficiency viruses of the family Lentiviridae represent species-specific viruses that rarely cross species barriers to infect new hosts. Among the Felidae, numerous immunodeficiency-like lentiviruses have been documented, but only a few cross-species transmissions have been recorded, and these have not been perpetuated in the recipient species. Lentivirus seroprevalence was determined for 79 bobcats (Lynx rufus) and 31 pumas (Puma concolor) from well-defined populations in Southern California. Partial genomic sequences were subsequently obtained from 18 and 12 seropositive bobcats and pumas, respectively. Genotypes were analyzed for phylogenic relatedness and genotypic composition among the study set and archived feline lentivirus sequences. This investigation of feline immunodeficiency virus infection in bobcats and pumas of Southern California provides evidence that cross-species infection has occurred frequently among these animals. The data suggest that transmission has occurred in multiple locations and are most consistent with the spread of the virus from bobcats to pumas. Although the ultimate causes remain unknown, these transmission events may occur as a result of puma predation on bobcats, a situation similar to that which fostered transmission of HIV to humans, and likely represent the emergence of a lentivirus with relaxed barriers to cross-species transmission. This unusual observation provides a valuable opportunity to evaluate the ecological, behavioral, and molecular conditions that favor repeated transmissions and persistence of lentivirus between species.


The Journal of Infectious Diseases | 2011

Genome-Wide Association Study Implicates PARD3B-Based AIDS Restriction

Jennifer L. Troyer; George W. Nelson; James A. Lautenberger; Leslie W. Chinn; Carl McIntosh; Randall C. Johnson; Efe Sezgin; Bailey Kessing; Michael Malasky; Sher L. Hendrickson; Guan Li; Joan Pontius; Minzhong Tang; Ping An; Cheryl A. Winkler; Sophie Limou; Sigrid Le Clerc; Olivier Delaneau; Jean F. Zagury; Hanneke Schuitemaker; Daniëlle van Manen; Jay H. Bream; Edward D. Gomperts; Susan Buchbinder; James J. Goedert; Gregory D. Kirk; Stephen J. O'Brien

BACKGROUND Host genetic variation influences human immunodeficiency virus (HIV) infection and progression to AIDS. Here we used clinically well-characterized subjects from 5 pretreatment HIV/AIDS cohorts for a genome-wide association study to identify gene associations with rate of AIDS progression. METHODS European American HIV seroconverters (n = 755) were interrogated for single-nucleotide polymorphisms (SNPs) (n = 700,022) associated with progression to AIDS 1987 (Cox proportional hazards regression analysis, co-dominant model). RESULTS Association with slower progression was observed for SNPs in the gene PARD3B. One of these, rs11884476, reached genome-wide significance (relative hazard = 0.3; P =3. 370 × 10(-9)) after statistical correction for 700,022 SNPs and contributes 4.52% of the overall variance in AIDS progression in this study. Nine of the top-ranked SNPs define a PARD3B haplotype that also displays significant association with progression to AIDS (hazard ratio, 0.3; P = 3.220 × 10(-8)). One of these SNPs, rs10185378, is a predicted exonic splicing enhancer; significant alteration in the expression profile of PARD3B splicing transcripts was observed in B cell lines with alternate rs10185378 genotypes. This SNP was typed in European cohorts of rapid progressors and was found to be protective for AIDS 1993 definition (odds ratio, 0.43, P = .025). CONCLUSIONS These observations suggest a potential unsuspected pathway of host genetic influence on the dynamics of AIDS progression.


Veterinary Immunology and Immunopathology | 2008

FIV Cross-Species Transmission: An Evolutionary Prospective

Jennifer L. Troyer; Sue VandeWoude; Jill Pecon-Slattery; Carl McIntosh; Sam Franklin; Agostinho Antunes; Warren E. Johnson; Stephen J. O'Brien

Abstract Feline and primate immunodeficiency viruses (FIVs, SIVs, and HIV) are transmitted via direct contact (e.g. fighting, sexual contact, and mother–offspring transmission). This dynamic likely poses a behavioral barrier to cross-species transmission in the wild. Recently, several host intracellular anti-viral proteins that contribute to species-specificity of primate lentiviruses have been identified revealing adaptive mechanisms that further limit spread of lentiviruses between species. Consistent with these inter-species transmission barriers, phylogenetic evidence supports the prediction that FIV transmission is an exceedingly rare event between free-ranging cat species, though it has occurred occasionally in captive settings. Recently we documented that puma and bobcats in Southern California share an FIV strain, providing an opportunity to evaluate evolution of both viral strains and host intracellular restriction proteins. These studies are facilitated by the availability of the 2× cat genome sequence annotation. In addition, concurrent viral and host genetic analyses have been used to track patterns of migration of the host species and barriers to transmission of the virus within the African lion. These studies illustrate the utility of FIV as a model to discover the variables necessary for establishment and control of lentiviral infections in new species.


Virology | 2009

Pathological manifestations of feline immunodeficiency virus (FIV) infection in wild African lions

Melody E. Roelke; Meredith A. Brown; Jennifer L. Troyer; Hanlie Winterbach; Christiaan W. Winterbach; Graham Hemson; Dahlem Smith; Randall C. Johnson; Jill Pecon-Slattery; Alfred L. Roca; Kathleen A. Alexander; Lin V. Klein; Paolo Martelli; Karthiyani Krishnasamy; Stephen J. O'Brien

Abstract Feline immunodeficiency virus (FIV) causes AIDS in the domestic cat (Felis catus) but has not been explicitly associated with AIDS pathology in any of the eight free-ranging species of Felidae that are endemic with circulating FIV strains. African lion (Panthera leo) populations are infected with lion-specific FIV strains (FIVple), yet there remains uncertainty about the degree to which FIV infection impacts their health. Reported CD4+ T-lymphocyte depletion in FIVple-infected lions and anecdotal reports of lion morbidity associated with FIV seroprevalence emphasize the concern as to whether FIVple is innocuous or pathogenic. Here we monitored clinical, biochemical, histological and serological parameters among FIVple-positive (N =47) as compared to FIVple-negative (N =17) lions anesthetized and sampled on multiple occasions between 1999 and 2006 in Botswana. Relative to uninfected lions, FIVple-infected lions displayed a significant elevation in the prevalence of AIDS-defining conditions: lymphadenopathy, gingivitis, tongue papillomas, dehydration, and poor coat condition, as well as displaying abnormal red blood cell parameters, depressed serum albumin, and elevated liver enzymes and gamma globulin. Spleen and lymph node biopsies from free-ranging FIVple-infected lions (N =9) revealed evidence of lymphoid depletion, the hallmark pathology documented in immunodeficiency virus infections of humans (HIV-1), macaques, and domestic cats. We conclude that over time FIVple infections in free-ranging lions can lead to adverse clinical, immunological, and pathological outcomes in some individuals that parallel sequelae caused by lentivirus infection in humans (HIV), Asian macaques (SIV) and domestic cats (FIVfca).

Collaboration


Dive into the Jennifer L. Troyer's collaboration.

Top Co-Authors

Avatar

Stephen J. O'Brien

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

Jill Pecon-Slattery

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sue VandeWoude

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Melody E. Roelke

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Efe Sezgin

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Meredith A. Brown

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sher L. Hendrickson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bailey Kessing

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

James A. Lautenberger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James J. Goedert

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge