Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer L. Wilding is active.

Publication


Featured researches published by Jennifer L. Wilding.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cancer stem cells from colorectal cancer-derived cell lines

Trevor M. Yeung; Shaan C. Gandhi; Jennifer L. Wilding; Ruth J. Muschel; Walter F. Bodmer

Cancer stem cells (CSCs) are the subpopulation of cells within a tumor that can self-renew, differentiate into multiple lineages, and drive tumor growth. Here we describe a two-pronged approach for the identification and characterization of CSCs from colorectal cancer cell lines, using a Matrigel-based differentiation assay, and cell surface markers CD44 and CD24. About 20 to 30% of cells from the SW1222 cell line form megacolonies in Matrigel that have complex 3D structures resembling colonic crypts. The megacolonies’ capacity to self-renew in vitro is direct evidence that they contain the CSCs. Furthermore, just 200 cells from SW1222 megacolonies initiate tumors in NOD/SCID mice. We also showed that CD44+CD24+ cells enriched for colorectal CSCs in the HT29 and SW1222 cell lines, which can self-renew and reform all four CD44/CD24 subpopulations, are the most clonogenic in vitro and can initiate tumors in vivo. A single SW1222 CD44+CD24+ CSC, when grown in Matrigel, can form large megacolonies that differentiate into enterocyte, enteroendocrine, and goblet cell lineages. The HCT116 line does not differentiate or express CDX1, nor does it contain subpopulations of cells with greater tumor-forming capacity, suggesting that HCT116 contains mainly CSCs. However, forced expression of CDX1 in HCT116 leads to reduced clonogenicity and production of differentiating crypt-containing colonies, which can explain the selection for reduced CDX1 expression in many colorectal cancers. In summary, colorectal cancer cell lines contain subpopulations of CSCs, characterized by their cell surface markers and colony morphology, which can self-renew and differentiate into multiple lineages.


Cancer Research | 2014

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer

Dmitri Mouradov; Clare Sloggett; Robert N. Jorissen; Christopher G. Love; Shan Li; Antony W. Burgess; Diego Arango; Robert L. Strausberg; Daniel D. Buchanan; Samuel Wormald; Liam O'Connor; Jennifer L. Wilding; David C. Bicknell; Ian Tomlinson; Walter F. Bodmer; John M. Mariadason; Oliver M. Sieber

Human colorectal cancer cell lines are used widely to investigate tumor biology, experimental therapy, and biomarkers. However, to what extent these established cell lines represent and maintain the genetic diversity of primary cancers is uncertain. In this study, we profiled 70 colorectal cancer cell lines for mutations and DNA copy number by whole-exome sequencing and SNP microarray analyses, respectively. Gene expression was defined using RNA-Seq. Cell line data were compared with those published for primary colorectal cancers in The Cancer Genome Atlas. Notably, we found that exome mutation and DNA copy-number spectra in colorectal cancer cell lines closely resembled those seen in primary colorectal tumors. Similarities included the presence of two hypermutation phenotypes, as defined by signatures for defective DNA mismatch repair and DNA polymerase ε proofreading deficiency, along with concordant mutation profiles in the broadly altered WNT, MAPK, PI3K, TGFβ, and p53 pathways. Furthermore, we documented mutations enriched in genes involved in chromatin remodeling (ARID1A, CHD6, and SRCAP) and histone methylation or acetylation (ASH1L, EP300, EP400, MLL2, MLL3, PRDM2, and TRRAP). Chromosomal instability was prevalent in nonhypermutated cases, with similar patterns of chromosomal gains and losses. Although paired cell lines derived from the same tumor exhibited considerable mutation and DNA copy-number differences, in silico simulations suggest that these differences mainly reflected a preexisting heterogeneity in the tumor cells. In conclusion, our results establish that human colorectal cancer lines are representative of the main subtypes of primary tumors at the genomic level, further validating their utility as tools to investigate colorectal cancer biology and drug responses.


Cancer Research | 2014

Cancer Cell Lines for Drug Discovery and Development

Jennifer L. Wilding; Walter F. Bodmer

Despite the millions of dollars spent on target validation and drug optimization in preclinical models, most therapies still fail in phase III clinical trials. Our current model systems, or the way we interpret data from them, clearly do not have sufficient clinical predictive power. Current opinion suggests that this is because the cell lines and xenografts that are commonly used are inadequate models that do not effectively mimic and predict human responses. This has become such a widespread belief that it approaches dogma in the field of drug discovery and optimization and has spurred a surge in studies devoted to the development of more sophisticated animal models such as orthotopic patient-derived xenografts in an attempt to obtain more accurate estimates of whether particular cancers will respond to given treatments. Here, we explore the evidence that has led to the move away from the use of in vitro cell lines and toward various forms of xenograft models for drug screening and development. We review some of the pros and cons of each model and give an overview of ways in which the use of cell lines could be modified to improve the predictive capacity of this well-defined model.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Gastrointestinal differentiation marker Cytokeratin 20 is regulated by homeobox gene CDX1.

Carol W. M. Chan; Newton A C S Wong; Ying Liu; David C. Bicknell; Helen Turley; Laura Hollins; Crispin J. Miller; Jennifer L. Wilding; Walter F. Bodmer

CDX1 is a transcription factor that plays a key role in intestinal development and differentiation. However, the downstream targets of CDX1 are less well defined than those of its close homologue, CDX2. We report here the identification of downstream targets of CDX1 using microarray gene-expression analysis and other approaches. Keratin 20 (KRT20), a member of the intermediate filament and a well-known marker of intestinal differentiation, was initially identified as one of the genes likely to be directly regulated by CDX1. CDX1 and KRT20 mRNA expression were significantly correlated in a panel of 38 colorectal cancer cell lines. Deletion and mutation analysis of the KRT20 promoter showed that the minimum regulatory region for the control of KRT20 expression by CDX1 is within 246 bp upstream of the KRT20 transcription start site. ChIP analysis confirmed that CDX1 binds to the predicted CDX elements in this region of the KRT20 promoter in vivo. In addition, immunohistochemistry showed expression of CDX1 parallels that of KRT20 in the normal crypt, which further supports their close relationship. In summary, our observations strongly imply that KRT20 is directly regulated by CDX1, and therefore suggest a role for CDX1 in maintaining differentiation in intestinal epithelial cells. Because a key feature of the development of a cancer is an unbalanced program of proliferation and differentiation, dysregulation of CDX1 may be an advantage for the development of a colorectal carcinoma. This could, therefore, explain the relatively frequent down regulation of CDX1 in colorectal carcinomas by hypermethylation.


European Urology | 2009

Mutations in the AXIN1 Gene in Advanced Prostate Cancer

George W. Yardy; David C. Bicknell; Jennifer L. Wilding; Sylvia Bartlett; Ying Liu; Bruce Winney; Gareth D. H. Turner; Simon Brewster; Walter F. Bodmer

BACKGROUND The Wnt signalling pathway directs aspects of embryogenesis and is thought to contribute to maintenance of certain stem cell populations. Disruption of the pathway has been observed in many different tumour types. In bowel, stomach, and endometrial cancer, this is usually due to mutation of genes encoding Wnt pathway components APC or beta-catenin. Such mutations are rare in hepatocellular carcinomas and medulloblastomas with Wnt pathway dysfunction, and there, mutation in genes for other Wnt molecules, such as Axin, is more frequently found. OBJECTIVE Although evidence of abnormal activation of the Wnt pathway in prostate cancer has been demonstrated by several groups, APC and beta-catenin mutations are infrequent. We sought mutations in genes encoding Wnt pathway participants in a panel of prostate cancer clinical specimens and cell lines. DESIGN, SETTING, AND PARTICIPANTS DNA was obtained from 49 advanced prostate cancer specimens using laser microdissection followed by whole genome amplification and 8 prostate cancer cell lines. MEASUREMENTS The DNA samples were screened for mutations in the genes encoding APC, beta-catenin, and Axin. The subcellular distribution of beta-catenin expression was assessed in the clinical specimens using immunohistochemistry. RESULTS AND LIMITATIONS Abnormal patterns of beta-catenin expression, suggesting Wnt pathway dysregulation, were observed in 71% of specimens. One APC mutation, two beta-catenin gene mutations, and 7 DNA sequence variations in the Axin gene were detected. Four different Axin polymorphisms were also found in the cell lines. The study does not provide definite evidence that the observed sequence changes alter protein function, promoting neoplasia, but the potential functional relevance of these variants is discussed. CONCLUSIONS These data contribute to our understanding of the role of Wnt dysregulation in prostatic tumourigenesis and support the current interest in the pathway as a therapeutic target. Of particular interest, we identified three new potentially functionally relevant AXIN1 mutations.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Direct and immune mediated antibody targeting of ERBB receptors in a colorectal cancer cell-line panel.

S Q Ashraf; Angela M. Nicholls; Jennifer L. Wilding; Triantafyllia G. Ntouroupi; Neil Mortensen; Walter F. Bodmer

A significant proportion of colorectal cancer (CRC) patients are resistant to anti-ERBB1 [avian erythroblastic leukemia viral (v-erb-b) oncogene homolog, receptor for EGF] monoclonal antibodies (Mabs). We evaluated both immune and nonimmune effects of cetuximab (anti-ERBB1 Mab), trastuzumab (anti-ERBB2 Mab), pertuzumab (anti-ERBB2 Mab), and lapatinib (dual ERBB1 and ERBB2 tyrosine kinase inhibitor) in a large well-characterized panel of 64 CRC cell lines to find response predictive tumor characteristics. There was a significant correlation between the direct effects of cetuximab and lapatinib. Both agents were associated (P = 0.0004) with “triple’ wild-type status in KRAS, BRAF, and PIK3CA exon 20. Most cell lines were resistant to the direct effects of anti-ERBB2 Mabs, suggesting that the effects of lapatinib might mainly be through ERBB1. Microarray mRNA expression profiles of sensitive and resistant cell lines showed that although ERBB1 receptor or ligand levels did not associate with cetuximab sensitivity, high levels of ERBB2 (P = 0.036) and amphiregulin (P = 0.026) predicted sensitivity to lapatinib. However, higher ERBB1 expression predicted susceptibility to cetuximab-induced antibody-dependent cellular cytotoxicity and occurred independently of KRAS/BRAF/PIK3CA mutations (P = 0.69). Lapatinib may be an effective alternative therapy to cetuximab in triple wild-type tumors. Microarray analysis provides suggestive biomarkers for resistance. ERBB1 levels, independent of mutation status, predict immune killing. Therefore, anti-ERBB1 antibodies may be considered in CRC tumors with higher ERBB1 expression and favorable FcγR polymorphisms.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers

Lin-ting Hsia; Neil Ashley; Djamila Ouaret; Lai Mun Wang; Jennifer L. Wilding; Walter F. Bodmer

Significance Myofibroblasts surround the epithelial cells of the crypts that form the surface of the gut. They play an important role in controlling the normal epithelium and influence the development of colorectal and other epithelial cancers. The definition of myofibroblasts previously depended almost entirely on the expression of smooth muscle actin. We identified the surface enzyme AOC3 (amine oxidase, copper containing 3) as a new marker of myofibroblasts and as a result have discovered additional highly distinctive markers for myofibroblasts, including the transcription factor NKX2-3. The discovery of these new markers should greatly enhance the proper definition of myofibroblasts and related cell types and thus should contribute to the improved treatment of the many diseases, including cancer, that involve these cell types. Pericryptal myofibroblasts in the colon and rectum play an important role in regulating the normal colorectal stem cell niche and facilitating tumor progression. Myofibroblasts previously have been distinguished from normal fibroblasts mostly by the expression of α smooth muscle actin (αSMA). We now have identified AOC3 (amine oxidase, copper containing 3), a surface monoamine oxidase, as a new marker of myofibroblasts by showing that it is the target protein of the myofibroblast-reacting mAb PR2D3. The normal and tumor tissue distribution and the cell line reactivity of AOC3 match that expected for myofibroblasts. We have shown that the surface expression of AOC3 is sensitive to digestion by trypsin and collagenase and that anti-AOC3 antibodies can be used for FACS sorting of myofibroblasts obtained by nonenzymatic procedures. Whole-genome microarray mRNA-expression profiles of myofibroblasts and skin fibroblasts revealed four additional genes that are significantly differentially expressed in these two cell types: NKX2-3 and LRRC17 in myofibroblasts and SHOX2 and TBX5 in skin fibroblasts. TGFβ substantially down-regulated AOC3 expression in myofibroblasts but in skin fibroblasts it dramatically increased the expression of αSMA. A knockdown of NKX2-3 in myofibroblasts caused a decrease of myofibroblast-related gene expression and increased expression of the fibroblast-associated gene SHOX2, suggesting that NKX2-3 is a key mediator for maintaining myofibroblast characteristics. Our results show that colorectal myofibroblasts, as defined by the expression of AOC3, NKX2-3, and other markers, are a distinctly different cell type from TGFβ-activated fibroblasts.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid.

Alzbeta Hulikova; Nick Black; Lin-ting Hsia; Jennifer L. Wilding; Walter F. Bodmer; Pawel Swietach

Significance Metabolism energizes cancer growth, but only if its end product, acid, is removed effectively. A bottleneck for acid handling is slow diffusion across the underperfused extracellular milieu of hypoxic tumors. Here, we characterize the acid-handling mechanisms operating in stromal myofibroblasts that can improve the flow of acid through tumors. We show that myofibroblasts are high-capacity reservoirs that absorb excess extracellular acidity, via the AE2 transporter, and transmit this acid load across a syncytium fused by channels, such as connexin-43. Furthermore, the cytokine TGFβ1, which orchestrates many cancer–stromal interactions, can stimulate acid uptake and transmission in stromal cells with lower baseline activities. Because many colorectal cancer cells do not express AE2 and connexin-43, acid traffic would be routed preferentially through the stromal compartment of tumors. Proliferation and invasion of cancer cells require favorable pH, yet potentially toxic quantities of acid are produced metabolically. Membrane-bound transporters extrude acid from cancer cells, but little is known about the mechanisms that handle acid once it is released into the poorly perfused extracellular space. Here, we studied acid handling by myofibroblasts (colon cancer-derived Hs675.T, intestinal InMyoFib, embryonic colon-derived CCD-112-CoN), skin fibroblasts (NHDF-Ad), and colorectal cancer (CRC) cells (HCT116, HT29) grown in monoculture or coculture. Expression of the acid-loading transporter anion exchanger 2 (AE2) (SLC4A2 product) was detected in myofibroblasts and fibroblasts, but not in CRC cells. Compared with CRC cells, Hs675.T and InMyoFib myofibroblasts had very high capacity to absorb extracellular acid. Acid uptake into CCD-112-CoN and NHDF-Ad cells was slower and comparable to levels in CRC cells, but increased alongside SLC4A2 expression under stimulation with transforming growth factor β1 (TGFβ1), a cytokine involved in cancer–stroma interplay. Myofibroblasts and fibroblasts are connected by gap junctions formed by proteins such as connexin-43, which allows the absorbed acid load to be transmitted across the stromal syncytium. To match the stimulatory effect on acid uptake, cell-to-cell coupling in NHDF-Ad and CCD-112-CoN cells was strengthened with TGFβ1. In contrast, acid transmission was absent between CRC cells, even after treatment with TGFβ1. Thus, stromal cells have the necessary molecular apparatus for assembling an acid-venting route that can improve the flow of metabolic acid through tumors. Importantly, the activities of stromal AE2 and connexin-43 do not place an energetic burden on cancer cells, allowing resources to be diverted for other activities.


Cancer Research | 2014

Dsh homolog DVL3 mediates resistance to IGFIR inhibition by regulating IGF-RAS signaling

Shan Gao; I. Bajrami; Clare Verrill; Asha Kigozi; Djamila Ouaret; Tamara Aleksic; Ruth Asher; Cheng Han; Paul Allen; Deborah Bailey; Stephan M. Feller; Takeshi Kashima; N A Athanasou; Jean-Yves Blay; Sandra Schmitz; Jean-Pascal Machiels; Nav Upile; Terry Jones; George N. Thalmann; S Q Ashraf; Jennifer L. Wilding; Walter F. Bodmer; Mark R. Middleton; Alan Ashworth; Christopher J. Lord; Valentine M. Macaulay

Drugs that inhibit insulin-like growth factor 1 (IGFI) receptor IGFIR were encouraging in early trials, but predictive biomarkers were lacking and the drugs provided insufficient benefit in unselected patients. In this study, we used genetic screening and downstream validation to identify the WNT pathway element DVL3 as a mediator of resistance to IGFIR inhibition. Sensitivity to IGFIR inhibition was enhanced specifically in vitro and in vivo by genetic or pharmacologic blockade of DVL3. In breast and prostate cancer cells, sensitization tracked with enhanced MEK-ERK activation and relied upon MEK activity and DVL3 expression. Mechanistic investigations showed that DVL3 is present in an adaptor complex that links IGFIR to RAS, which includes Shc, growth factor receptor-bound-2 (Grb2), son-of-sevenless (SOS), and the tumor suppressor DAB2. Dual DVL and DAB2 blockade synergized in activating ERKs and sensitizing cells to IGFIR inhibition, suggesting a nonredundant role for DVL3 in the Shc-Grb2-SOS complex. Clinically, tumors that responded to IGFIR inhibition contained relatively lower levels of DVL3 protein than resistant tumors, and DVL3 levels in tumors correlated inversely with progression-free survival in patients treated with IGFIR antibodies. Because IGFIR does not contain activating mutations analogous to EGFR variants associated with response to EGFR inhibitors, we suggest that IGF signaling achieves an equivalent integration at the postreceptor level through adaptor protein complexes, influencing cellular dependence on the IGF axis and identifying a patient population with potential to benefit from IGFIR inhibition.


Genes, Chromosomes and Cancer | 2001

Analysis of loss of heterozygosity in lymphoma and leukaemia arising in F1 hybrid mice locates a common region of chromosome 4 loss.

Emmy Meijne; René Huiskamp; Jackie Haines; John Moody; Rosemary Finnon; Jennifer L. Wilding; Sylvia Spanjer; Simon Bouffler; A.A. Edwards; Roger Cox; Andrew Silver

Previous studies have identified five lymphoma‐related tumour suppressor gene regions on murine chromosome 4. Using detailed allelotype analysis on a range of lympho‐haematopoietic tumour types arising in F1 hybrid mice, we now show a consistent pattern of loss of heterozygosity (LOH) which identifies a common region of loss delineated by microsatellites D4Mit21 and D4Mit53 on proximal chromosome 4. This critical segment corresponds to the thymic lymphoma tumour suppressor region 5 (TLSR5) identified in an earlier study. Tumours of this type have also been reported as showing allelic loss from the Trp53 and Ikaros regions on chromosome 11. In the present study, only a small fraction of tumours showed LOH in the Ikaros region, while a minority of lymphomas, but not acute myeloid leukaemias, showed allelic loss of the chromosome 11 segment encoding Trp53. These and other data indicate strongly that the genomic regions identified as showing recurrent LOH depend on the genetic background of the mice. Overall, the results indicate a key role for a tumour suppressor gene(s) encoded in an ∼3 cM segment on proximal chromosome 4 and provide an experimental basis for the further investigation of the functional role of candidate genes which include Pax5 and Tgfbr1.

Collaboration


Dive into the Jennifer L. Wilding's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Liu

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Andrew Silver

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Ian Tomlinson

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jackie Haines

National Radiological Protection Board

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge