Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer M. Frost is active.

Publication


Featured researches published by Jennifer M. Frost.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease.

Eric M. Reiman; Richard J. Caselli; Kewei Chen; Gene E. Alexander; Daniel Bandy; Jennifer M. Frost

Cross-sectional positron emission tomography (PET) studies find that cognitively normal carriers of the apolipoprotein E (APOE) ɛ4 allele, a common Alzheimers susceptibility gene, have abnormally low measurements of the cerebral metabolic rate for glucose (CMRgl) in the same regions as patients with Alzheimers dementia. In this article, we characterize longitudinal CMRgl declines in cognitively normal ɛ4 heterozygotes, estimate the power of PET to test the efficacy of treatments to attenuate these declines in 2 years, and consider how this paradigm could be used to efficiently test the potential of candidate therapies for the prevention of Alzheimers disease. We studied 10 cognitively normal ɛ4 heterozygotes and 15 ɛ4 noncarriers 50–63 years of age with a reported family history of Alzheimers dementia before and after an interval of approximately 2 years. The ɛ4 heterozygotes had significant CMRgl declines in the vicinity of temporal, posterior cingulate, and prefrontal cortex, basal forebrain, parahippocampal gyrus, and thalamus, and these declines were significantly greater than those in the ɛ4 noncarriers. In testing candidate primary prevention therapies, we estimate that between 50 and 115 cognitively normal ɛ4 heterozygotes are needed per active and placebo treatment group to detect a 25% attenuation in these CMRgl declines with 80% power and P = 0.005 in 2 years. Assuming these CMRgl declines are related to the predisposition to Alzheimers dementia, this study provides a paradigm for testing the potential of treatments to prevent the disorder without having to study thousands of research subjects or wait many years to determine whether or when treated individuals develop symptoms.


PLOS Genetics | 2010

The Importance of Imprinting in the Human Placenta

Jennifer M. Frost; Gudrun E. Moore

As a field of study, genomic imprinting has grown rapidly in the last 20 years, with a growing figure of around 100 imprinted genes known in the mouse and approximately 50 in the human. The imprinted expression of genes may be transient and highly tissue-specific, and there are potentially hundreds of other, as yet undiscovered, imprinted transcripts. The placenta is notable amongst mammalian organs for its high and prolific expression of imprinted genes. This review discusses the development of the human placenta and focuses on the function of imprinting in this organ. Imprinting is potentially a mechanism to balance parental resource allocation and it plays an important role in growth. The placenta, as the interface between mother and fetus, is central to prenatal growth control. The expression of genes subject to parental allelic expression bias has, over the years, been shown to be essential for the normal development and physiology of the placenta. In this review we also discuss the significance of genes that lack conservation of imprinting between mice and humans, genes whose imprinted expression is often placental-specific. Finally, we illustrate the importance of imprinting in the postnatal human in terms of several human imprinting disorders, with consideration of the brain as a key organ for imprinted gene expression after birth.


Journal of Medical Genetics | 2007

The genetic aetiology of Silver-Russell syndrome

Sayeda Abu-Amero; David Monk; Jennifer M. Frost; M A Preece; Philip Stanier; Gudrun E. Moore

Silver–Russell syndrome (SRS MIM180860) is a disorder characterised by intrauterine and/or postnatal growth restriction and typical facies. However, the clinical picture is extremely diverse due to numerous diagnostic features reflecting a heterogeneous genetic disorder. The mode of inheritance is variable with sporadic cases also being described. Maternal uniparental disomy (mUPD) of chromosome 7 accounts for 10% of SRS cases and many candidate imprinted genes on 7 have been investigated. Chromosome 11 has moved to the forefront as the key chromosome in the aetiology, with reports of methylation defects in the H19 imprinted domain associated with the phenotype in 35–65% of SRS patients. Methylation aberrations have been described in a number of other imprinted growth related disorders such as Beckwith–Wiedmann syndrome. This review discusses these recent developments as well as the previous work on chromosome 7. Other candidate genes/chromosomal regions previously investigated are tabled.


Journal of Molecular Medicine | 2007

Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight

Apostolidou S; Sayeda Abu-Amero; O'Donoghue K; Jennifer M. Frost; Olafsdottir O; Chavele Km; John C. Whittaker; Loughna P; Philip Stanier; Gudrun E. Moore

The identification of genes that regulate fetal growth will help establish the reasons for intrauterine growth restriction. Most autosomal genes are expressed biallelically, but some are imprinted, expressed only from one parental allele. Imprinted genes are associated with fetal growth and development. The growth of the fetus in utero relies on effective nutrient transfer from the mother to the fetus via the placenta. Some current research on the genetic control of fetal growth has focused on genes that display imprinted expression in utero. The expression levels of four imprinted genes, the paternally expressed insulin growth factor 2 (IGF2), the mesoderm-specific transcript isoform 1 (MEST); the maternally expressed pleckstrin homology-like domain, family A, member 2 (PHLDA2); and the polymorphically imprinted insulin-like growth factor 2 (IGF2R) gene are all known to have roles in fetal growth and were studied in the placentae of 200 white European, normal term babies. The quantitative expression analysis with real-time PCR showed the maternally expressing PHLDA2 but not the paternally expressing IGF2 and MEST, nor the polymorphic maternally expressing IGF2R placental levels to have a statistically significant effect on birth weight. PHLDA2 expression levels are negatively correlated with size at birth. These data implicate PHLDA2 as an imprinted gene important in fetal growth and also as a potential marker of fetal growth.


Molecular Therapy | 2012

Valproic Acid Confers Functional Pluripotency to Human Amniotic Fluid Stem Cells in a Transgene-free Approach

Dafni Moschidou; Sayandip Mukherjee; Michael P. Blundell; Katharina Drews; Gemma N. Jones; Hassan Abdulrazzak; Beata Nowakowska; Anju Phoolchund; Kenneth Lay; T Selvee Ramasamy; Mara Cananzi; Daniel Nettersheim; M.H.F. Sullivan; Jennifer M. Frost; Gudrun E. Moore; Joris Vermeesch; Nicholas M. Fisk; Adrian J. Thrasher; Anthony Atala; James Adjaye; Hubert Schorle; Paolo De Coppi; Pascale V. Guillot

Induced pluripotent stem cells (iPSCs) with potential for therapeutic applications can be derived from somatic cells via ectopic expression of a set of limited and defined transcription factors. However, due to risks of random integration of the reprogramming transgenes into the host genome, the low efficiency of the process, and the potential risk of virally induced tumorigenicity, alternative methods have been developed to generate pluripotent cells using nonintegrating systems, albeit with limited success. Here, we show that c-KIT+ human first-trimester amniotic fluid stem cells (AFSCs) can be fully reprogrammed to pluripotency without ectopic factors, by culture on Matrigel in human embryonic stem cell (hESC) medium supplemented with the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The cells share 82% transcriptome identity with hESCs and are capable of forming embryoid bodies (EBs) in vitro and teratomas in vivo. After long-term expansion, they maintain genetic stability, protein level expression of key pluripotency factors, high cell-division kinetics, telomerase activity, repression of X-inactivation, and capacity to differentiate into lineages of the three germ layers, such as definitive endoderm, hepatocytes, bone, fat, cartilage, neurons, and oligodendrocytes. We conclude that AFSC can be utilized for cell banking of patient-specific pluripotent cells for potential applications in allogeneic cellular replacement therapies, pharmaceutical screening, and disease modeling.


Human Molecular Genetics | 2009

Reciprocal imprinting of human GRB10 in placental trophoblast and brain: evolutionary conservation of reversed allelic expression

David Monk; Philippe Arnaud; Jennifer M. Frost; Frank Hills; Philip Stanier; Robert Feil; Gudrun E. Moore

Genomic imprinting may have evolved not only to regulate fetal growth and development, but also behaviour. The mouse Grb10 gene provides a remarkable model to explore this idea because it shows paternal expression in brain, whereas in the placenta and most other embryonic tissues, expression is from the maternal allele. To assess the biological relevance of this reciprocal pattern of imprinting, we explored its conservation in humans. As in mice, we find the human GRB10 gene to be paternally expressed in brain. Maternal allele-specific expression is conserved only in the placental villous trophoblasts, an essential part of the placenta involved in nutrient transfer. All other fetal tissues tested showed equal expression from both alleles. These data suggest that the maternal GRB10 expression in placenta is evolutionarily important, presumably in the control of fetal growth. As in the mouse, the maternal transcripts originate from several kilobases upstream of the imprinting control region (ICR) of the domain, from a promoter region at which we find no allelic chromatin differences. The brain-specific paternal expression from the ICR shows mechanistic similarities with the mouse as well. This conserved CpG island is DNA-methylated on the maternal allele and is marked on the paternal allele by developmentally regulated bivalent chromatin, with the presence of both H3 lysine-4 and H3 lysine-27 methylation. The strong conservation of the opposite allelic expression in placenta versus brain supports the hypothesis that GRB10 imprinting evolved to mediate diverse roles in mammalian growth and behaviour.


Philosophical Transactions of the Royal Society B | 2015

The role and interaction of imprinted genes in human fetal growth.

Gudrun E. Moore; Miho Ishida; Charalambos Demetriou; Lara Al-Olabi; Lydia J. Leon; Anna Thomas; Sayeda Abu-Amero; Jennifer M. Frost; Jaime L. Stafford; Yao Chaoqun; Andrew J. Duncan; Rachel Baigel; Marina Brimioulle; Isabel Iglesias-Platas; Sophia Apostolidou; Reena Aggarwal; John C. Whittaker; Argyro Syngelaki; Kypros H. Nicolaides; Lesley Regan; David Monk; Philip Stanier

Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.


Epigenetics | 2011

The effects of culture on genomic imprinting profiles in human embryonic and fetal mesenchymal stem cells

Jennifer M. Frost; Dave Monk; Dafni Moschidou; Pascale V. Guillot; Philip Stanier; Stephen Minger; Nicholas M. Fisk; Harry Moore; Gudrun E. Moore

Human embryonic stem (hES) cells and fetal mesenchymal stem cells (fMSC) offer great potential for regenerative therapy strategies. It is therefore important to characterise the properties of these cells in vitro. One major way the environment impacts on cellular physiology is through changes to epigenetic mechanisms. Genes subject to epigenetic regulation via genomic imprinting have been characterised extensively. The integrity of imprinted gene expression therefore provides a measurable index for epigenetic stability. Allelic expression of 26 imprinted genes and DNA methylation at associated differentially methylated regions (DMRs) was measured in fMSC and hES cell lines. Both cell types exhibited monoallelic expression of 13 imprinted genes, biallelic expression of six imprinted genes, and there were seven genes that differed in allelic expression between cell lines. fMSCs exhibited the differential DNA methylation patterns associated with imprinted expression. This was unexpected given that gene expression of several imprinted genes was biallelic. However, in hES cells, differential methylation was perturbed. These atypical methylation patterns did not correlate with allelic expression. Our results suggest that regardless of stem cell origin, in vitro culture affects the integrity of imprinted gene expression in human cells. We identify biallelic and variably expressed genes that may inform on overall epigenetic stability. As differential methylation did not correlate with imprinted expression changes we propose that other epigenetic effectors are adversely influenced by the in vitro environment. Since DMR integrity was maintained in fMSC but not hES cells, we postulate that specific hES cell derivation and culturing practices result in changes in methylation at DMRs.


PLOS ONE | 2010

Evaluation of allelic expression of imprinted genes in adult human blood.

Jennifer M. Frost; Dave Monk; Taita Stojilkovic-Mikic; Kathryn Woodfine; Lyn S. Chitty; Adele Murrell; Philip Stanier; Gudrun E. Moore

Background Imprinted genes are expressed from only one allele in a parent-of-origin dependent manner. Loss of imprinted (LOI) expression can result in a variety of human disorders and is frequently reported in cancer. Biallelic expression of imprinted genes in adult blood has been suggested as a useful biomarker and is currently being investigated in colorectal cancer. In general, the expression profiles of imprinted genes are well characterised during human and mouse fetal development, but not in human adults. Methodology/Principal Findings We investigated quantitative expression of 36 imprinted genes in adult human peripheral blood leukocytes obtained from healthy individuals. Allelic expression was also investigated in B and T lymphocytes and myeloid cells. We found that 21 genes were essentially undetectable in adult blood. Only six genes were demonstrably monoallelic, and most importantly, we found that nine genes were either biallelic or showed variable expression in different individuals. Separated leukocyte populations showed the same expression patterns as whole blood. Differential methylation at each of the imprinting control loci analysed was maintained, including regions that contained biallelically expressed genes. This suggests in some cases methylation has become uncoupled from its role in regulating gene expression. Conclusions/Significance We conclude that only a limited set of imprinted genes, including IGF2 and SNRPN, may be useful for LOI cancer biomarker studies. In addition, blood is not a good tissue to use for the discovery of new imprinted genes. Finally, lymphocyte DNA methylation status in the adult may not always be a reliable indicator of monoallelic gene expression.


Nucleic Acids Research | 2011

Human imprinted retrogenes exhibit non-canonical imprint chromatin signatures and reside in non-imprinted host genes

David Monk; Philippe Arnaud; Jennifer M. Frost; Andrew J. Wood; Michael Cowley; Alejandro Martin-Trujillo; Amy Guillaumet-Adkins; Isabel Iglesias Platas; Cristina Camprubi; Déborah Bourc’his; Robert Feil; Gudrun E. Moore; Rebecca J. Oakey

Imprinted retrotransposed genes share a common genomic organization including a promoter-associated differentially methylated region (DMR) and a position within the intron of a multi-exonic ‘host’ gene. In the mouse, at least one transcript of the host gene is also subject to genomic imprinting. Human retrogene orthologues are imprinted and we reveal that human host genes are not imprinted. This coincides with genomic rearrangements that occurred during primate evolution, which increase the separation between the retrogene DMRs and the host genes. To address the mechanisms governing imprinted retrogene expression, histone modifications were assayed at the DMRs. For the mouse retrogenes, the active mark H3K4me2 was associated with the unmethylated paternal allele, while the methylated maternal allele was enriched in repressive marks including H3K9me3 and H4K20me3. Two human retrogenes showed monoallelic enrichment of active, but not of repressive marks suggesting a partial uncoupling of the relationship between DNA methylation and repressive histone methylation, possibly due to the smaller size and lower CpG density of these DMRs. Finally, we show that the genes immediately flanking the host genes in mouse and human are biallelically expressed in a range of tissues, suggesting that these loci are distinct from large imprinted clusters.

Collaboration


Dive into the Jennifer M. Frost's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Stanier

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeonhee Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

David Monk

University College London

View shared research outputs
Top Co-Authors

Avatar

Guen Tae Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin-Sup Park

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge