Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer M. Gillette is active.

Publication


Featured researches published by Jennifer M. Gillette.


Nature Methods | 2008

High-density mapping of single-molecule trajectories with photoactivated localization microscopy

Suliana Manley; Jennifer M. Gillette; George H. Patterson; Hari Shroff; Harald F. Hess; Eric Betzig; Jennifer Lippincott-Schwartz

We combined photoactivated localization microscopy (PALM) with live-cell single-particle tracking to create a new method termed sptPALM. We created spatially resolved maps of single-molecule motions by imaging the membrane proteins Gag and VSVG, and obtained several orders of magnitude more trajectories per cell than traditional single-particle tracking enables. By probing distinct subsets of molecules, sptPALM can provide insight into the origins of spatial and temporal heterogeneities in membranes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure.

Gleb Shtengel; James A. Galbraith; Catherine G. Galbraith; Jennifer Lippincott-Schwartz; Jennifer M. Gillette; Suliana Manley; Rachid Sougrat; Clare M. Waterman; Pakorn Kanchanawong; Michael W. Davidson; Richard D. Fetter; Harald F. Hess

Understanding molecular-scale architecture of cells requires determination of 3D locations of specific proteins with accuracy matching their nanometer-length scale. Existing electron and light microscopy techniques are limited either in molecular specificity or resolution. Here, we introduce interferometric photoactivated localization microscopy (iPALM), the combination of photoactivated localization microscopy with single-photon, simultaneous multiphase interferometry that provides sub-20-nm 3D protein localization with optimal molecular specificity. We demonstrate measurement of the 25-nm microtubule diameter, resolve the dorsal and ventral plasma membranes, and visualize the arrangement of integrin receptors within endoplasmic reticulum and adhesion complexes, 3D protein organization previously resolved only by electron microscopy. iPALM thus closes the gap between electron tomography and light microscopy, enabling both molecular specification and resolution of cellular nanoarchitecture.


Nature Methods | 2009

Photoactivatable mCherry for high-resolution two-color fluorescence microscopy

Fedor V. Subach; George H. Patterson; Suliana Manley; Jennifer M. Gillette; Jennifer Lippincott-Schwartz; Vladislav V. Verkhusha

The reliance of modern microscopy techniques on photoactivatable fluorescent proteins prompted development of mCherry variants that are initially dark but become red fluorescent after violet-light irradiation. Using ensemble and single-molecule characteristics as selection criteria, we developed PAmCherry1 with excitation/emission maxima at 564/595 nm. Compared to other monomeric red photoactivatable proteins, it has faster maturation, better pH stability, faster photoactivation, higher photoactivation contrast and better photostability. Lack of green fluorescence and single-molecule behavior make monomeric PAmCherry1 a preferred tag for two-color diffraction-limited photoactivation imaging and for super-resolution techniques such as one- and two-color photoactivated localization microscopy (PALM). We performed PALM imaging using PAmCherry1-tagged transferrin receptor expressed alone or with photoactivatable GFP–tagged clathrin light chain. Pair correlation and cluster analyses of the resulting PALM images identified ≤200 nm clusters of transferrin receptor and clathrin light chain at ≤25 nm resolution and confirmed the utility of PAmCherry1 as an intracellular probe.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes

Hari Shroff; Catherine G. Galbraith; James A. Galbraith; Helen White; Jennifer M. Gillette; Scott G. Olenych; Michael W. Davidson; Eric Betzig

Accurate determination of the relative positions of proteins within localized regions of the cell is essential for understanding their biological function. Although fluorescent fusion proteins are targeted with molecular precision, the position of these genetically expressed reporters is usually known only to the resolution of conventional optics (≈200 nm). Here, we report the use of two-color photoactivated localization microscopy (PALM) to determine the ultrastructural relationship between different proteins fused to spectrally distinct photoactivatable fluorescent proteins (PA-FPs). The nonperturbative incorporation of these endogenous tags facilitates an imaging resolution in whole, fixed cells of ≈20–30 nm at acquisition times of 5–30 min. We apply the technique to image different pairs of proteins assembled in adhesion complexes, the central attachment points between the cytoskeleton and the substrate in migrating cells. For several pairs, we find that proteins that seem colocalized when viewed by conventional optics are resolved as distinct interlocking nano-aggregates when imaged via PALM. The simplicity, minimal invasiveness, resolution, and speed of the technique all suggest its potential to directly visualize molecular interactions within cellular structures at the nanometer scale.


Nature Cell Biology | 2009

Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche

Jennifer M. Gillette; Andre Larochelle; Cynthia E. Dunbar; Jennifer Lippincott-Schwartz

Haematopoietic stem-progenitor cells (HSPCs) reside in the bone marrow niche, where interactions with osteoblasts provide essential cues for their proliferation and survival. Here, we use live-cell imaging to characterize both the site of contact between osteoblasts and haematopoietic progenitor cells (HPCs) and events at this site that result in downstream signalling responses important for niche maintenance. HPCs made prolonged contact with the osteoblast surface through a specialized membrane domain enriched in prominin 1, CD63 and rhodamine PE. At the contact site, portions of the specialized domain containing these molecules were taken up by the osteoblast and internalized into SARA-positive signalling endosomes. This caused osteoblasts to downregulate Smad signalling and increase production of stromal-derived factor-1 (SDF-1), a chemokine responsible for HSPC homing to bone marrow. These findings identify a mechanism involving intercellular transfer to signalling endosomes for targeted regulation of signalling and remodelling events within an ex vivo osteoblastic niche.


Journal of Cell Science | 2003

The role of annexin 2 in osteoblastic mineralization

Jennifer M. Gillette; Sheila M. Nielsen-Preiss

While the basic cellular contributions to bone differentiation and mineralization are widely accepted, the regulation of these processes at the intracellular level remains inadequately understood. Our laboratory recently identified annexin 2 as a protein involved in osteoblastic mineralization. Annexin 2 was overexpressed twofold in SaOSLM2 osteoblastic cells as a fusion protein with green fluorescent protein. The overexpression of annexin 2 led to an increase in alkaline phosphatase activity as well as an increase in mineralization. Our data suggest that the increase in alkaline phosphatase activity does not result from increased alkaline phosphatase transcript or protein levels; therefore we evaluated mechanism of action. We determined that both annexin 2 and alkaline phosphatase activity were localized to membrane microdomains called lipid rafts in osteoblastic cells. Annexin 2 overexpression resulted in an increase in alkaline phosphatase activity that was associated with lipid microdomains in a cholesterol-dependent manner. Furthermore, disruption of lipid rafts with a cholesterol sequestering agent or reduction of annexin 2 expression by specific antisense oligonucleotides each resulted in diminished mineralization. Therefore, intact lipid rafts containing annexin 2 appear to be important for alkaline phosphatase activity and may facilitate the osteoblastic mineralization process.


Journal of Cellular Biochemistry | 2004

Annexin 2 expression is reduced in human osteosarcoma metastases

Jennifer M. Gillette; Daniel C. Chan; Sheila M. Nielsen-Preiss

Osteosarcoma is an aggressive primary bone cancer affecting primarily children and young adults. The development of valuable diagnostic indicators and therapeutic agents will be enhanced by the identification and characterization of genes that contribute to its aggressive behavior. We used representational difference analysis to isolate genes differentially expressed between primary human osteosarcoma tumors and subsequent metastatic lung lesions to identify genes potentially involved in metastatic potential. Several genes were differentially expressed between the two tumor populations, including annexin2. The levels of annexin2 mRNA and protein inversely correlated with metastatic potential in a subset of human osteosarcoma tumor specimens, as well as in a human osteosarcoma cell line selected for increased metastatic potential. Annexin2 has been described in several cellular localizations with various functional implications, many of which may be relevant to metastatic potential. Therefore, the subcellular localization of endogenous annexin2 protein was evaluated biochemically by subcellular fractionation and immunologically by flow cytometry and immunofluorescence in osteoblastic cells. Annexin2 was localized to the cytoplasm and intracellular aspect of the plasma membrane, excluded from the nucleus and undetectable on the cell surface or in the conditioned medium. Overexpression of annexin2 in osteosarcoma cells did not alter several in vitro phenotypes often used to assess metastatic potential including motility, adhesion, and proliferation. However, our previous data have implicated annexin2 in the mineralization process of osteoblastic cells in vitro. Consistent with an increase in differentiation‐induced mineralization, there was diminished tumorigenicity and experimental metastatic potential of osteosarcoma cells overexpressing annexin2. These data suggest that annexin2 may downregulate osteosarcoma aggressiveness by inducing a more differentiated state in osteoblastic cells.


Methods in Enzymology | 2010

Single-Particle Tracking Photoactivated Localization Microscopy For Mapping Single-Molecule Dynamics

Suliana Manley; Jennifer M. Gillette; Jennifer Lippincott-Schwartz

Recent developments in single-molecule localization techniques using photoactivatable fluorescent proteins have allowed the probing of single-molecule motion in a living cell with high specificity, millisecond time resolution, and nanometer spatial resolution. Analyzing the dynamics of individual molecules at high densities in this manner promises to provide new insights into the mechanisms of many biological processes, including protein heterogeneity in the plasma membrane, the dynamics of cytoskeletal flow, and clustering of receptor complexes in response to signaling cues. Here we describe the method of single-molecule tracking photoactivated localization microscopy (sptPALM) and discuss how its use can contribute to a quantitative understanding of fundamental cellular processes.


Molecular Biology of the Cell | 2014

The membrane scaffold CD82 regulates cell adhesion by altering α4 integrin stability and molecular density

Christina M. Termini; Maura L. Cotter; Kristopher D. Marjon; Tione Buranda; Keith A. Lidke; Jennifer M. Gillette

CD82 expression alters cell–matrix adhesion and integrin surface expression. The use of superresolution microscopy together with protein clustering algorithms leads to identification of a critical role for CD82 in regulating the molecular density of the α4 integrin.


Blood | 2012

Bone marrow homing and engraftment of human hematopoietic stem and progenitor cells is mediated by a polarized membrane domain

Andre Larochelle; Jennifer M. Gillette; Desmond R; Ichwan B; Amy Cantilena; Cerf A; Barrett Aj; Alan S. Wayne; Jennifer Lippincott-Schwartz; Cynthia E. Dunbar

Manipulation of hematopoietic stem/progenitor cells (HSPCs) ex vivo is of clinical importance for stem cell expansion and gene therapy applications. However, most cultured HSPCs are actively cycling, and show a homing and engraftment defect compared with the predominantly quiescent noncultured HSPCs. We previously showed that HSPCs make contact with osteoblasts in vitro via a polarized membrane domain enriched in adhesion molecules such as tetraspanins. Here we show that increased cell cycling during ex vivo culture of HSPCs resulted in disruption of this membrane domain, as evidenced by disruption of polarity of the tetraspanin CD82. Chemical disruption or antibody-mediated blocking of CD82 on noncultured HSPCs resulted in decreased stromal cell adhesion, homing, and engraftment in nonobese diabetic/severe combined immunodeficiency IL-2γ(null) (NSG) mice compared with HSPCs with an intact domain. Most leukemic blasts were actively cycling and correspondingly displayed a loss of domain polarity and decreased homing in NSG mice compared with normal HSPCs. We conclude that quiescent cells, unlike actively cycling cells, display a polarized membrane domain enriched in tetraspanins that mediates homing and engraftment, providing a mechanistic explanation for the homing/engraftment defect of cycling cells and a potential new therapeutic target to enhance engraftment.

Collaboration


Dive into the Jennifer M. Gillette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suliana Manley

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre Larochelle

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia E. Dunbar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eric Betzig

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge