Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer M. Hurley is active.

Publication


Featured researches published by Jennifer M. Hurley.


Journal of Biological Chemistry | 2009

Bacterial Toxin HigB Associates with Ribosomes and Mediates Translation-dependent mRNA Cleavage at A-rich Sites

Jennifer M. Hurley; Nancy A. Woychik

Most pathogenic Proteus species are primarily associated with urinary tract infections, especially in persons with indwelling catheters or functional/anatomic abnormalities of the urinary tract. Urinary tract infections caused by Proteus vulgaris typically form biofilms and are resistant to commonly used antibiotics. The Rts1 conjugative plasmid from a clinical isolate of P. vulgaris carries over 300 predicted open reading frames, including antibiotic resistance genes. The maintenance of the Rts1 plasmid is ensured in part by the HigBA toxin-antitoxin system. We determined the precise mechanism of action of the HigB toxin in vivo, which is distinct from other known toxins. We demonstrate that HigB is an endoribonuclease whose enzymatic activity is dependent on association with ribosomes through the 50 S subunit. Using primer extension analysis of several test mRNAs, we showed that HigB cleaved extensively across the entire length of coding regions only at specific recognition sequences. HigB mediated cleavage of 100% of both in-frame and out-of-frame AAA sequences. In addition, HigB cleaved ∼20% of AA sequences in coding regions and occasionally cut single As. Remarkably, the cleavage specificity of HigB coincided with one of the most frequently used codons in the AT-rich Proteus spp., AAA (lysine). Therefore, the HigB-mediated plasmid maintenance system for the Rts1 plasmid highlights the intimate relationship between host cells and extrachromosomal DNA that enables the dynamic acquisition of genes that impart a spectrum of survival advantages, including those encoding multidrug resistance and virulence factors.


Structure | 2010

Crystal Structures of Phd-Doc, HigA, and YeeU Establish Multiple Evolutionary Links between Microbial Growth-Regulating Toxin-Antitoxin Systems.

Mark A. Arbing; Samuel K. Handelman; Alexandre P. Kuzin; Grégory Verdon; Chi Wang; Min Su; Francesca P. Rothenbacher; Mariam Abashidze; Mohan Liu; Jennifer M. Hurley; Rong Xiao; Thomas B. Acton; Masayori Inouye; Gaetano T. Montelione; Nancy A. Woychik; John F. Hunt

Bacterial toxin-antitoxin (TA) systems serve a variety of physiological functions including regulation of cell growth and maintenance of foreign genetic elements. Sequence analyses suggest that TA families are linked by complex evolutionary relationships reflecting likely swapping of functional domains between different TA families. Our crystal structures of Phd-Doc from bacteriophage P1, the HigA antitoxin from Escherichia coli CFT073, and YeeU of the YeeUWV systems from E. coli K12 and Shigella flexneri confirm this inference and reveal additional, unanticipated structural relationships. The growth-regulating Doc toxin exhibits structural similarity to secreted virulence factors that are toxic for eukaryotic target cells. The Phd antitoxin possesses the same fold as both the YefM and NE2111 antitoxins that inhibit structurally unrelated toxins. YeeU, which has an antitoxin-like activity that represses toxin expression, is structurally similar to the ribosome-interacting toxins YoeB and RelE. These observations suggest extensive functional exchanges have occurred between TA systems during bacterial evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

Jennifer M. Hurley; Arko Dasgupta; Jillian M. Emerson; Xiaoying Zhou; Carol S. Ringelberg; Nicole Knabe; Anna Lipzen; Erika Lindquist; Christopher Daum; Kerrie Barry; Igor V. Grigoriev; Kristina M. Smith; James E. Galagan; Deborah Bell-Pedersen; Michael Freitag; Chao Cheng; Jennifer J. Loros; Jay C. Dunlap

Significance Circadian clocks regulate gene expression levels to allow an organism to anticipate environmental conditions. These clocks reside in all the major branches of life and confer a competitive advantage to the organisms that maintain them. The clock in the fungus Neurospora crassa is an excellent model for basic understanding of core circadian architecture as well as for filamentous fungi. Here, we identify genes whose expression is clock regulated; indeed, as much as 40% of the transcriptome may be clock regulated, broadly directing daytime catabolism and nighttime growth. Both transcriptional control and posttranscriptional regulation play major roles in control of cycling transcripts such that DNA binding of transcription factors alone appears insufficient to set the phase of circadian transcription. Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level.


Journal of Biological Chemistry | 2011

Bacterial Toxin RelE Mediates Frequent Codon-independent mRNA Cleavage from the 5′ End of Coding Regions in Vivo

Jennifer M. Hurley; Jonathan W. Cruz; Ming Ouyang; Nancy A. Woychik

The enzymatic activity of the RelE bacterial toxin component of the Escherichia coli RelBE toxin-antitoxin system has been extensively studied in vitro and to a lesser extent in vivo. These earlier reports revealed that 1) RelE alone does not exhibit mRNA cleavage activity, 2) RelE mediates mRNA cleavage through its association with the ribosome, 3) RelE-mediated mRNA cleavage occurs at the ribosomal A site and, 4) Cleavage of mRNA by RelE exhibits high codon specificity. More specifically, RelE exhibits a preference for the stop codons UAG and UGA and sense codons CAG and UCG in vitro. In this study, we used a comprehensive primer extension approach to map the frequency and codon specificity of RelE cleavage activity in vivo. We found extensive cleavage at the beginning of the coding region of five transcripts, ompA, lpp, ompF, rpsA, and tufA. We then mapped RelE cleavage sites across one short transcript (lpp) and two long transcripts (ompF and ompA). RelE cut all of these transcripts frequently and efficiently within the first ∼100 codons, only occasionally cut beyond this point, and rarely cut at sites in proximity to the 3′ end. Among 196 RelE sites in these five transcripts, there was no preference for CAG or UCG sense codons. In fact, bioinformatic analysis of the RelE cleavage sites failed to identify any sequence preferences. These results suggest a model of RelE function distinct from those proposed previously, because RelE directed frequent codon-independent mRNA cleavage coincident with the commencement of translation elongation.


Journal of Bacteriology | 2012

Clostridium difficile MazF Toxin Exhibits Selective, Not Global, mRNA Cleavage

Francesca P. Rothenbacher; Motoo Suzuki; Jennifer M. Hurley; Thomas J. Montville; Thomas J. Kirn; Ming Ouyang; Nancy A. Woychik

Clostridium difficile is an important, emerging nosocomial pathogen. The transition from harmless colonization to disease is typically preceded by antimicrobial therapy, which alters the balance of the intestinal flora, enabling C. difficile to proliferate in the colon. One of the most perplexing aspects of the C. difficile infectious cycle is its ability to survive antimicrobial therapy and transition from inert colonization to active infection. Toxin-antitoxin (TA) systems have been implicated in facilitating persistence after antibiotic treatment. We identified only one TA system in C. difficile strain 630 (epidemic type X), designated MazE-cd and MazF-cd, a counterpart of the well-characterized Escherichia coli MazEF TA system. This E. coli MazF toxin cleaves mRNA at ACA sequences, leading to global mRNA degradation, growth arrest, and death. Likewise, MazF-cd expression in E. coli or Clostridium perfringens resulted in growth arrest. Primer extension analysis revealed that MazF-cd cleaved RNA at the five-base consensus sequence UACAU, suggesting that the mRNAs susceptible to cleavage comprise a subset of total mRNAs. In agreement, we observed differential cleavage of several mRNAs by MazF-cd in vivo, revealing a direct correlation between the number of cleavage recognition sites within a given transcript and its susceptibility to degradation by MazF-cd. Interestingly, upon detailed statistical analyses of the C. difficile transcriptome, the major C. difficile virulence factor toxin B (TcdB) and CwpV, a cell wall protein involved in aggregation, were predicted to be significantly resistant to MazF-cd cleavage.


Molecular Cell | 2013

Conserved RNA Helicase FRH Acts Nonenzymatically to Support the Intrinsically Disordered Neurospora Clock Protein FRQ

Jennifer M. Hurley; Luis F. Larrondo; Jennifer J. Loros; Jay C. Dunlap

Protein conformation dictates a great deal of protein function. A class of naturally unstructured proteins, termed intrinsically disordered proteins (IDPs), demonstrates that flexibility in structure can be as important mechanistically as rigid structure. At the core of the circadian transcription/translation feedback loop in Neurospora crassa is the protein FREQUENCY (FRQ), shown here shown to share many characteristics of IDPs. FRQ in turn binds to FREQUENCY-Interacting RNA Helicase (FRH), whose clock function has been assumed to relate to its predicted helicase function. However, mutational analyses reveal that the helicase function of FRH is not essential for the clock, and a region of FRH distinct from the helicase region is essential for stabilizing FRQ against rapid degradation via a pathway distinct from its typical ubiquitin-mediated turnover. These data lead to the hypothesis that FRQ is an IDP and that FRH acts nonenzymatically, stabilizing FRQ to enable proper clock circuitry/function.


Fungal Genetics and Biology | 2016

The circadian system as an organizer of metabolism

Jennifer M. Hurley; Jennifer J. Loros; Jay C. Dunlap

The regulation of metabolism by circadian systems is believed to be a key reason for the extensive representation of circadian rhythms within the tree of life. Despite this, surprisingly little work has focused on the link between metabolism and the clock in Neurospora, a key model system in circadian research. The analysis that has been performed has focused on the unidirectional control from the clock to metabolism and largely ignored the feedback from metabolism on the clock. Recent efforts to understand these links have broken new ground, revealing bidirectional control from the clock to metabolism and vise-versa, showing just how strongly interconnected these two cellular systems can be in fungi. This review describes both well understood and emerging links between the clock and metabolic output of fungi as well as the role that metabolism plays in influencing the rhythm set by the clock.


Methods in Enzymology | 2015

Dissecting the mechanisms of the clock in Neurospora.

Jennifer M. Hurley; Jennifer J. Loros; Jay C. Dunlap

The circadian clock exists to synchronize inner physiology with the external world, allowing life to anticipate and adapt to the continual changes that occur in an organisms environment. The clock architecture is highly conserved, present in almost all major branches of life. Within eukaryotes, the filamentous fungus Neurospora crassa has consistently been used as an excellent model organism to uncover the basic circadian physiology and molecular biology. The Neurospora model has elucidated our fundamental understanding of the clock as nested positive and negative feedback loop, regulated by transcriptional and posttranscriptional processes. This review will examine the basics of circadian rhythms in the model filamentous fungus N. crassa as well as highlight the output of the clock in Neurospora and the reasons that N. crassa has continued to be a strong model for the study of circadian rhythms. It will also synopsize classical and emerging methods in the study of the circadian clock.


G3: Genes, Genomes, Genetics | 2012

Light-Inducible System for Tunable Protein Expression in Neurospora crassa

Jennifer M. Hurley; Chen-Hui Chen; Jennifer J. Loros; Jay C. Dunlap

Filamentous fungi are important model systems for understanding eukaryotic cellular processes, including the study of protein expression. A salient feature of fungi is the ability of the protein-processing machinery to perform all of the extensive posttranslational modifications needed in the complex world of eukaryotic organisms, making them great hosts for production of eukaryotic proteins. In the model organism Neurospora crassa, several regulatable promoters have been used for heterologous gene expression but all suffer from leaky expression absent stimuli or an inability to induce protein expression at levels greater than those seen in vivo. To increase and better control in vivo protein expression in Neurospora, we have harnessed the light-induced vvd promoter. vvd promoter-driven mRNA expression is dependent upon light, shows a graded response, and is rapidly shut off when returned to the dark. The vvd promoter is a highly tunable and regulatable system, which could be a useful instrument for those interested in efficient and controllable gene expression.


Journal of Biological Rhythms | 2017

Guidelines for Genome-Scale Analysis of Biological Rhythms

Michael E. Hughes; Katherine C. Abruzzi; Ravi Allada; Ron C. Anafi; Alaaddin Bulak Arpat; Gad Asher; Pierre Baldi; Charissa de Bekker; Deborah Bell-Pedersen; Justin Blau; Steve Brown; M. Fernanda Ceriani; Zheng Chen; Joanna C. Chiu; Juergen Cox; Alexander M. Crowell; Jason P. DeBruyne; Derk-Jan Dijk; Luciano DiTacchio; Francis J. Doyle; Giles E. Duffield; Jay C. Dunlap; Kristin Eckel-Mahan; Karyn A. Esser; Garret A. FitzGerald; Daniel B. Forger; Lauren J. Francey; Ying-Hui Fu; Frédéric Gachon; David Gatfield

Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.

Collaboration


Dive into the Jennifer M. Hurley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Ouyang

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge