Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer M. Lotz is active.

Publication


Featured researches published by Jennifer M. Lotz.


The Astrophysical Journal | 2007

Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies

Kai G. Noeske; Benjamin J. Weiner; S. M. Faber; Casey Papovich; David C. Koo; Rachel S. Somerville; Kevin Bundy; Christopher J. Conselice; J. A. Newman; David Schiminovich; E. Le Floc'h; Alison L. Coil; G. H. Rieke; Jennifer M. Lotz; Joel R. Primack; P. Barmby; Michael C. Cooper; M. Davis; Richard S. Ellis; Giovanni G. Fazio; Puragra Guhathakurta; Jing Huang; Susan A. Kassin; D. C. Martin; Andrew C. Phillips; Robert Michael Rich; Todd Small; C. A. N. Willmer; Graham Wallace Wilson

We analyze star formation (SF) as a function of stellar mass (M☉) and redshift z in the All-Wavelength Extended Groth Strip International Survey. For 2905 field galaxies, complete to 10^10(10^10.8 )M at z < 0.7(1), with Keck spectroscopic redshifts out to z = 1.1, we compile SF rates (SFRs) from emission lines, GALEX, and Spitzer MIPS 24 µm photometry, optical-NIR M* measurements, and HST morphologies. Galaxies with reliable signs of SF form a distinct “main sequence” (MS), with a limited range of SFRs at a given M* and z (1 σ ≾ ±0.3 dex), and log (SFR) approximately proportional to log M*. The range of log (SFR) remains constant to z > 1, while the MS as a whole moves to higher SFR as z increases. The range of the SFR along the MS constrains the amplitude of episodic variations of SF and the effect of mergers on the SFR. Typical galaxies spend ∼67%(95%) of their lifetime since z = 1 within a factor of ≾2(4) of their average SFR at a given M* and z. The dominant mode of the evolution of SF since z ∼ 1 is apparently a gradual decline of the average SFR in most individual galaxies, not a decreasing frequency of starburst episodes, or a decreasing factor by which SFRs are enhanced in starbursts. LIRGs at z ∼ 1 seem to mostly reflect the high SFR typical for massive galaxies at that epoch. The smooth MS may reflect that the same set of few physical processes governs SF prior to additional quenching processes. A gradual process like gas exhaustion may play a dominant role.


The Astrophysical Journal | 2009

UBIQUITOUS OUTFLOWS IN DEEP2 SPECTRA OF STAR-FORMING GALAXIES AT z = 1.4

Benjamin J. Weiner; Alison L. Coil; Jason X. Prochaska; Jeffrey A. Newman; Michael C. Cooper; Kevin Bundy; Christopher J. Conselice; Aaron A. Dutton; S. M. Faber; David C. Koo; Jennifer M. Lotz; G. H. Rieke; Kate H. R. Rubin

Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium (IGM) and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption-line systems. We use a sample of 1406 galaxy spectra at z ~ 1.4 from the DEEP2 redshift survey to show that blueshifted Mg IYI ?? 2796, 2803 absorption is ubiquitous in star-forming galaxies at this epoch. This is the first detection of frequent outflowing galactic winds at z ~ 1. The presence and depth of absorption are independent of active galactic nuclei spectral signatures or galaxy morphology; major mergers are not a prerequisite for driving a galactic wind from massive galaxies. Outflows are found in co-added spectra of galaxies spanning a range of 30 times in stellar mass and 10 times in star formation rate (SFR), calibrated from K-band and from the Multiband Imaging Photometer for Spitzer IR fluxes. The outflows have column densities of order NH ~ 1020 cm-2 and characteristic velocities of ~?300-500?km?s?1, with absorption seen out to 1000?km?s?1 in the most massive, highest SFR galaxies. The velocities suggest that the outflowing gas can escape into the IGM and that massive galaxies can produce cosmologically and chemically significant outflows. Both the Mg II equivalent width and the outflow velocity are larger for galaxies of higher stellar mass and SFR, with V wind ~ SFR0.3, similar to the scaling in low redshift IR-luminous galaxies. The high frequency of outflows in the star-forming galaxy population at z ~ 1 indicates that galactic winds occur in the progenitors of massive spirals as well as those of ellipticals. The increase of outflow velocity with mass and SFR constrains theoretical models of galaxy evolution that include feedback from galactic winds, and may favor momentum-driven models for the wind physics.


The Astronomical Journal | 2004

A NEW NONPARAMETRIC APPROACH TO GALAXY MORPHOLOGICAL CLASSIFICATION

Jennifer M. Lotz; Joel R. Primack; Piero Madau

We present two new nonparametric methods for quantifying galaxy morphology: the relative distribution of the galaxy pixel flux values (the Gini coefficient or G) and the second-order moment of the brightest 20% of the galaxys flux (M20). We test the robustness of G and M20 to decreasing signal-to-noise ratio (S/N) and spatial resolution and find that both measures are reliable to within 10% for images with average S/N per pixel greater than 2 and resolutions better than 1000 and 500 pc, respectively. We have measured G and M20, as well as concentration (C), asymmetry (A), and clumpiness (S) in the rest-frame near-ultraviolet/optical wavelengths for 148 bright local normal Hubble-type galaxies (E–Sd) galaxies, 22 dwarf irregulars, and 73 0.05 < z < 0.25 ultraluminous infrared galaxies (ULIRGs). We find that most local galaxies follow a tight sequence in G-M20-C, where early types have high G and C and low M20 and late-type spirals have lower G and C and higher M20. The majority of ULIRGs lie above the normal galaxy G-M20 sequence because of their high G and M20 values. Their high Gini coefficients arise from very bright nuclei, while the high second-order moments are produced by multiple nuclei and bright tidal tails. All of these features are signatures of recent and on-going mergers and interactions. We also find that in combination with A and S, G is more effective than C at distinguishing ULIRGs from the normal Hubble types. Finally, we measure the morphologies of 491.7 < z < 3.8 galaxies from HST NICMOS observations of the Hubble Deep Field North. We find that many of the z ~ 2 galaxies possess G and A higher than expected from degraded images of local elliptical and spiral galaxies and have morphologies more like low-redshift ULIRGs.


The Astrophysical Journal | 2007

The All-wavelength Extended Groth Strip International Survey (AEGIS) Data Sets

M. Davis; Puragra Guhathakurta; Nicholas P. Konidaris; Jeffrey A. Newman; M. L. N. Ashby; A. D. Biggs; Pauline Barmby; Kevin Bundy; S. C. Chapman; Alison L. Coil; Christopher J. Conselice; Michael C. Cooper; Darren J. Croton; Peter R. M. Eisenhardt; Richard S. Ellis; S. M. Faber; Taotao Fang; Giovanni G. Fazio; A. Georgakakis; Brian F. Gerke; W. M. Goss; Stephen D. J. Gwyn; Justin Harker; Andrew M. Hopkins; Jia-Sheng Huang; R. J. Ivison; Susan A. Kassin; Evan N. Kirby; Anton M. Koekemoer; David C. Koo

In this the first of a series of Letters, we present a panchromatic data set in the Extended Groth Strip region of the sky. Our survey, the All-Wavelength Extended Groth Strip International Survey (AEGIS), aims to study the physical properties and evolutionary processes of galaxies at z ~ 1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS X-ray, GALEX ultraviolet, CFHT/MegaCam Legacy Survey optical, CFHT/CFH12K optical, Hubble Space Telescope/ACS optical and NICMOS near-infrared, Palomar/WIRC near-infrared, Spitzer/IRAC mid-infrared, Spitzer/MIPS far-infrared, and VLA radio continuum. In addition, this region of the sky has been targeted for extensive spectroscopy using the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10 m telescope. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage.


Astrophysical Journal Supplement Series | 2013

The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

Jeffrey A. Newman; Michael C. Cooper; Marc Davis; S. M. Faber; Alison L. Coil; Puragra Guhathakurta; David C. Koo; Andrew C. Phillips; Charlie Conroy; Aaron A. Dutton; Douglas P. Finkbeiner; Brian F. Gerke; D. Rosario; Benjamin J. Weiner; Christopher N. A. Willmer; Renbin Yan; Justin Harker; Susan A. Kassin; Nicholas P. Konidaris; Kamson Lai; Darren Madgwick; Kai G. Noeske; Gregory D. Wirth; Andrew J. Connolly; Nick Kaiser; Evan N. Kirby; Brian C. Lemaux; Lihwai Lin; Jennifer M. Lotz; Gerard A. Luppino

We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z ~ 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M_B = −20 at z ~ 1 via ~90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg^2 divided into four separate fields observed to a limiting apparent magnitude of R_(AB) = 24.1. Objects with z ≾0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45, where the [O ii] 3727 A doublet lies in the infrared. The DEIMOS 1200 line mm^(−1) grating used for the survey delivers high spectral resolution (R ~ 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed through more than 2000 objects with duplicate observations. Sky subtraction is essentially photon-limited even under bright OH sky lines; we describe the strategies that permitted this, based on high image stability, accurate wavelength solutions, and powerful B-spline modeling methods. We also investigate the impact of targets that appear to be single objects in ground-based targeting imaging but prove to be composite in Hubble Space Telescope data; they constitute several percent of targets at z ~ 1, approaching ~5%–10% at z > 1.5. Summary data are given that demonstrate the superiority of DEEP2 over other deep high-precision redshift surveys at z ~ 1 in terms of redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far.


The Astrophysical Journal | 2008

The Evolution of Galaxy Mergers and Morphology at z < 1.2 in the Extended Groth Strip

Jennifer M. Lotz; M. Davis; S. M. Faber; Puragra Guhathakurta; Stephen D. J. Gwyn; Jia-Sheng Huang; David C. Koo; Lihwai Lin; Jeffrey A. Newman; Kai G. Noeske; Casey Papovich; Christopher N. A. Willmer; Alison L. Coil; Christopher J. Conselice; Michael C. Cooper; Andrew M. Hopkins; Anne Julie Metevier; Joel R. Primack; G. H. Rieke; Benjamin J. Weiner

We present the quantitative rest-frame B morphological evolution and galaxy merger fraction at 0.2 1011 L☉ are disk galaxies, and only ~15% are classified as major merger candidates. Edge-on and dusty disk galaxies (Sb-Ir) are almost a third of the red sequence at z ~ 1.1, while E/S0/Sa make up over 90% of the red sequence at z ~ 0.3. Approximately 2% of our full sample are red mergers. We conclude (1) the merger rate does not evolve strongly between 0.2 < z < 1.2; (2) the decrease in the volume-averaged star formation rate density since z ~ 1 is a result of declining star formation in disk galaxies rather than a disappearing population of major mergers; (3) the build-up of the red sequence at z < 1 can be explained by a doubling in the number of spheroidal galaxies since z ~ 1.2.


The Astrophysical Journal | 2007

Star formation in AEGIS field galaxies since z = 1.1: Staged galaxy formation and a model of mass-dependent gas exhaustion

Kai G. Noeske; S. M. Faber; Benjamin J. Weiner; David C. Koo; Joel R. Primack; Avishai Dekel; Casey Papovich; Christopher J. Conselice; E. Le Floc'h; G. H. Rieke; Alison L. Coil; Jennifer M. Lotz; Rachel S. Somerville; Kevin Bundy

We analyze star formation (SF) as a function of stellar mass (M☉) and redshift z in the All-Wavelength Extended Groth Strip International Survey, for star-forming field galaxies with M* ≳ 10^10 M☉ out to z = 1.1. The data indicate that the high specific SF rates (SFRs) of many less massive galaxies do not represent late, irregular or recurrent, starbursts in evolved galaxies. They rather seem to reflect the onset (initial burst) of the dominant SF episode of galaxies, after which SF gradually declines on gigayear timescales to z = 0 and forms the bulk of a galaxy’s M*. With decreasing mass, this onset of major SF shifts to decreasing z for an increasing fraction of galaxies (staged galaxy formation). This process may be an important component of the “downsizing” phenomenon. We find that the predominantly gradual decline of SFRs described by Noeske et al. can be reproduced by exponential SF histories (τ models), if less massive galaxies have systematically longer e-folding times τ, and a later onset of SF (zf). Our model can provide a first parameterization of SFR as a function of M* and z, and quantify mass dependences of τ and z, from direct observations of M* and SFRs up to z > 1. The observed evolution of SF in galaxies can plausibly reflect the dominance of gradual gas exhaustion. The data are also consistent with the history of cosmological accretion onto dark matter halos.


The Astrophysical Journal | 2012

CANDELS: Constraining the AGN-Merger Connection with Host Morphologies at z 2

Dale D. Kocevski; S. M. Faber; Mark Mozena; Anton M. Koekemoer; Kirpal Nandra; Cyprian Rangel; E. S. Laird; M. Brusa; Stijn Wuyts; Jonathan R. Trump; David C. Koo; Rachel S. Somerville; Eric F. Bell; Jennifer M. Lotz; D. M. Alexander; Frédéric Bournaud; Christopher J. Conselice; Tomas Dahlen; Avishai Dekel; J. L. Donley; J. S. Dunlop; Alexis Finoguenov; A. Georgakakis; Mauro Giavalisco; Yicheng Guo; Norman A. Grogin; Nimish P. Hathi; S. Juneau; J. Kartaltepe; Ray A. Lucas

Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z ~ 2. Our sample consists of 72 moderate-luminosity (L X ~ 1042-44 erg s–1) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4+5.8 – 5.9%), while a smaller percentage are found in spheroids (27.8+5.8 – 4.6%). Roughly 16.7+5.3 – 3.5% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6+5.6 – 5.9%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z ~ 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z ~ 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z ~ 2 than previously thought.


Monthly Notices of the Royal Astronomical Society | 2008

Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers

Jennifer M. Lotz; Patrik Jonsson; Thomas J. Cox; Joel R. Primack

A key obstacle to understanding the galaxy merger rate and its role in galaxy evolution is the difficulty in constraining the merger properties and time-scales from instantaneous snapshots of the real Universe. The most common way to identify galaxy mergers is by morphology, yet current theoretical calculations of the time-scales for galaxy disturbances are quite crude. We present a morphological analysis of a large suite of gadgetN-body/hydrodynamical equal-mass gas-rich disc galaxy mergers which have been processed through the Monte Carlo radiative transfer code sunrise. With the resulting images, we examine the dependence of quantitative morphology (G, M20, C, A) in the SDSS g band on merger stage, dust, viewing angle, orbital parameters, gas properties, supernova feedback and total mass. We find that mergers appear most disturbed in G−M20 and asymmetry at the first pass and at the final coalescence of their nuclei, but can have normal quantitative morphologies at other merger stages. The merger observability time-scales depend on the method used to identify the merger as well as the gas fraction, pericentric distance and relative orientation of the merging galaxies. Enhanced star formation peaks after and lasts significantly longer than strong morphological disturbances. Despite their massive bulges, the majority of merger remnants appear disc-like and dusty in g-band light because of the presence of a low-mass star-forming disc.


The Astronomical Journal | 2002

Metallicities of Old Open Clusters

Eileen D. Friel; Kenneth A. Janes; Maritza Tavarez; Jennifer Scott; Rocio Katsanis; Jennifer M. Lotz; Linh N. Hong; Nathan D. Miller

We present radial velocities and metallicities for a sample of 39 open clusters with ages greater than about 700 million years. For 24 clusters new moderate-resolution spectroscopic data obtained with multiobject spectrographs on the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory 4 m telescopes are used to determine radial velocities and mean cluster metallicities. These new results are combined with data published previously by Friel & Janes to provide a sample of 459 giants in 39 old open clusters, which are used to investigate radial abundance gradients in the Galactic disk. Based on an updated abundance calibration of spectroscopic indices measuring Fe and Fe-peak element blends, this larger sample yields an abundance gradient of -0.06 ± 0.01 dex kpc-1 over a range in Galactocentric radius of 7 to 16 kpc. There is a slight suggestion of a steepening of the abundance gradient with increasing cluster age in this sample, but the significance of the result is limited by the restricted distance range for the youngest clusters. The clusters show no correlation of metallicity with age in the solar neighborhood. Consistent with the evidence for a steepening of the gradient with age, the clusters in the outer disk beyond 10 kpc show a suggestion at the 1.5 σ level of a dependence of metallicity on age.

Collaboration


Dive into the Jennifer M. Lotz's collaboration.

Top Co-Authors

Avatar

Henry C. Ferguson

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Anton M. Koekemoer

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

David C. Koo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. M. Faber

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey A. Newman

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alison L. Coil

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge