Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer M. S. Koh is active.

Publication


Featured researches published by Jennifer M. S. Koh.


Journal of Biological Chemistry | 2008

Substrate Specificity of Platypus Venom L-to-D-Peptide Isomerase

Paramjit S. Bansal; Allan M. Torres; Ben Crossett; Karen K. Y. Wong; Jennifer M. S. Koh; Dp Geraghty; Jamie I. Vandenberg; Philip W. Kuchel

The l-to-d-peptide isomerase from the venom of the platypus (Ornithorhyncus anatinus) is the first such enzyme to be reported for a mammal. In delineating its catalytic mechanism and broader roles in the animal, its substrate specificity was explored. We used N-terminal segments of defensin-like peptides DLP-2 and DLP-4 and natriuretic peptide OvCNP from the venom as substrates. The DLP analogues IMFsrs and ImFsrs (srs is a solubilizing chain; lowercase letters denote d-amino acid) were effective substrates for the isomerase; it appears to recognize the N-terminal tripeptide sequence Ile-Xaa-Phe-. A suite of 26 mutants of these hexapeptides was synthesized by replacing the second residue (Met) with another amino acid, viz. Ala, α-aminobutyric acid, Ile, Leu, Lys, norleucine, Phe, Tyr, and Val. It was shown that mutant peptides incorporating norleucine and Phe are substrates and exhibit l- or d-amino acid isomerization, but mutant peptides that contain residues with shorter, β-branched or long side chains with polar terminal groups, viz. Ala, α-aminobutyric acid, Ile, Val, Leu, Lys, and Tyr, respectively, are not substrates. It was demonstrated that at least three N-terminal amino acid residues are absolutely essential for l- to d-isomerization; furthermore, the third amino acid must be a Phe residue. None of the hexapeptides based on LLH, the first three residues of OvCNP, were substrates. A consistent 2-base mechanism is proposed for the isomerization; abstraction of a proton by 1 base is concomitant with delivery of a proton by the conjugate acid of a second base.


Journal of Proteomics | 2013

Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using LC-MALDI-TOF mass spectrometry

Alexandre Palagi; Jennifer M. S. Koh; Mathieu Leblanc; Denise Wilson; Sébastien Dutertre; Glenn F. King; Graham M. Nicholson; Pierre Escoubas

UNLABELLED Spider venoms represent vast sources of bioactive molecules whose diversity remains largely unknown. Indeed, only a small subset of species have been studied out of the ~43,000 extant spider species. The present study investigated inter- and intra-species venom complexity in 18 samples collected from a variety of lethal Australian funnel-web spiders (Mygalomorphae: Hexathelidae: Atracinae) using C4 reversed-phase separation coupled to offline MALDI-TOF mass spectrometry (LC-MALDI-TOF MS). An in-depth investigation focusing on four atracine venoms (male Illawarra wisharti, male and female Hadronyche cerberea, and female Hadronyche infensa Toowoomba) revealed, on average, ~800 peptides in female venoms while male venoms contained ~400 peptides, distributed across most HPLC fractions. This is significantly higher than previous estimates of peptide expression in mygalomorph venoms. These venoms also showed distinct intersexual as well as intra- and inter-species variation in peptide masses. Construction of both 3D and 2D contour plots revealed that peptide mass distributions in all 18 venoms were centered around the 3200-5400m/z range and to a lesser extent the 6600-8200m/z range, consistent with previously described hexatoxins. These findings highlight the extensive diversity of peptide toxins in Australian funnel-web spider venoms that that can be exploited as novel therapeutic and biopesticide lead molecules. BIOLOGICAL SIGNIFICANCE In the present study we describe the complexity of 18 venoms from lethal Australian funnel-web spiders using LC-MALDI-TOF MS. The study includes an in-depth investigation, focusing on four venoms, that revealed the presence of ~800 peptides in female venoms and ~400 peptides in male venoms. This is significantly higher than previous estimates of peptide expression in spider venoms. By constructing both 3D and 2D contour plots we were also able to reveal the distinct intersexual as well as intra- and inter-species variation in venom peptide masses. We show that peptide mass distributions in all 18 venoms were centered around the 3200-5400 m/z range and to a lesser extent the 6600-8200 m/z range, consistent with the small number of previously described hexatoxins from these spiders. These findings highlight the extensive diversity of peptide toxins in Australian funnel-web spider venoms that that can be exploited as novel therapeutic and biopesticide lead molecules. The present study has greatly expanded our understanding of peptide variety and complexity in these lethal mygalomorph spiders. Specifically it highlights both the utility of LC-MALDI-TOF in spider taxonomy and the massive combinatorial peptide libraries that spider venoms offer the pharmaceutical and agrochemical industry.


Journal of Proteomics | 2009

Understanding and utilising mammalian venom via a platypus venom transcriptome

Camilla M. Whittington; Jennifer M. S. Koh; Wesley C. Warren; Anthony T. Papenfuss; Allan M. Torres; Philip W. Kuchel; Katherine Belov

Only five mammalian species are known to be venomous, and while a large amount of research has been carried out on reptile venom, mammalian venom has been poorly studied to date. Here we describe the status of current research into the venom of the platypus, a semi-aquatic egg-laying Australian mammal, and discuss our approach to platypus venom transcriptomics. We propose that such construction and analysis of mammalian venom transcriptomes from small samples of venom gland, in tandem with proteomics studies, will allow the identification of the full range of mammalian venom components. Functional studies and pharmacological evaluation of the identified toxins will then lay the foundations for the future development of novel biomedical substances. A large range of useful molecules have already been identified in snake venom, and many of these are currently in use in human medicine. It is therefore hoped that this basic research to identify the constituents of platypus venom will eventually yield novel drugs and new targets for painkillers.


Chemistry & Biodiversity | 2010

Mammalian peptide isomerase: platypus-type activity is present in mouse heart.

Jennifer M. S. Koh; Stephanie J. P. Chow; Ben Crossett; Philip W. Kuchel

Male platypus (Ornithorhynchus anatinus) venom has a peptidyl aminoacyl L/D‐isomerase (hereafter called peptide isomerase) that converts the second amino acid residue in from the N‐terminus from the L‐ to the D‐form, and vice versa. A reversed‐phase high‐performance liquid chromatography (RP‐HPLC) assay has been developed to monitor the interconversion using synthetic hexapeptides derived from defensin‐like peptide‐2 (DLP‐2) and DLP‐4 as substrates. It was hypothesised that animals other than the platypus would have peptide isomerase with the same substrate specificity. Accordingly, eight mouse tissues were tested and heart was shown to have the activity. This is notable for being the first evidence of a peptide isomerase being present in a higher mammal and heralds finding the activity in man.


Rapid Communications in Mass Spectrometry | 2015

The complexity and structural diversity of ant venom peptidomes is revealed by mass spectrometry profiling.

Axel Touchard; Jennifer M. S. Koh; Samira R. Aili; Alain Dejean; Graham M. Nicholson; Jérôme Orivel; Pierre Escoubas

RATIONALE Compared with other animal venoms, ant venoms remain little explored. Ants have evolved complex venoms to rapidly immobilize arthropod prey and to protect their colonies from predators and pathogens. Many ants have retained peptide-rich venoms that are similar to those of other arthropod groups. METHODS With the goal of conducting a broad and comprehensive survey of ant venom peptide diversity, we investigated the peptide composition of venoms from 82 stinging ant species from nine subfamilies using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). We also conducted an in-depth investigation of eight venoms using reversed-phase high-performance liquid chromatography (RP-HPLC) separation coupled with offline MALDI-TOFMS. RESULTS Our results reveal that the peptide compositions of ant venom peptidomes from both poneroid and formicoid ant clades comprise hundreds of small peptides (<4 kDa), while large peptides (>4 kDa) are also present in the venom of formicoids. Chemical reduction revealed the presence of disulfide-linked peptides in most ant subfamilies, including peptides structured by one, two or three disulfide bonds as well as dimeric peptides reticulated by three disulfide bonds. CONCLUSIONS The biochemical complexity of ant venoms, associated with an enormous ecological and taxonomic diversity, suggests that stinging ant venoms constitute a promising source of bioactive molecules that could be exploited in the search for novel drug and biopesticide leads.


Toxicon | 2014

Venom toxicity and composition in three Pseudomyrmex ant species having different nesting modes

Axel Touchard; Nicolas Labrière; Olivier Henri Roux; Frédéric Petitclerc; Jérôme Orivel; Pierre Escoubas; Jennifer M. S. Koh; Graham M. Nicholson; Alain Dejean

We aimed to determine whether the nesting habits of ants have influenced their venom toxicity and composition. We focused on the genus Pseudomyrmex (Pseudomyrmecinae) comprising terrestrial and arboreal species, and, among the latter, plant-ants that are obligate inhabitants of myrmecophytes (i.e., plants sheltering ants in hollow structures). Contrary to our hypothesis, the venom of the ground-dwelling species, Pseudomyrmex termitarius, was as efficacious in paralyzing prey as the venoms of the arboreal and the plant-ant species, Pseudomyrmex penetrator and Pseudomyrmex gracilis. The lethal potency of P. termitarius venom was equipotent with that of P. gracilis whereas the venom of P. penetrator was less potent. The MALDI-TOF MS analysis of each HPLC fraction of the venoms showed that P. termitarius venom is composed of 87 linear peptides, while both P. gracilis and P. penetrator venoms (23 and 26 peptides, respectively) possess peptides with disulfide bonds. Furthermore, P. penetrator venom contains three hetero- and homodimeric peptides consisting of two short peptidic chains linked together by two interchain disulfide bonds. The large number of peptides in P. termitarius venom is likely related to the large diversity of potential prey plus the antibacterial peptides required for nesting in the ground. Whereas predation involves only the prey and predator, P. penetrator venom has evolved in an environment where trees, defoliating insects, browsing mammals and ants live in equilibrium, likely explaining the diversity of the peptide structures.


Australian Journal of Zoology | 2010

L-to-D-peptide isomerase in male echidna venom

Jennifer M. S. Koh; Leesa Haynes; Katherine Belov; Philip W. Kuchel

The monotremes (the echidnas and the platypus) display both mammalian and reptilian features. Male monotremes have a bilateral crural gland that is connected via a duct to a spur on each hind limb. Male echidnas appear not to use their spurs as weapons in aggressive acts, but the crural system may have a role in reproductive behaviour because it appears only to be active during the breeding season. The secretions produced by the echidna’s crural gland have not hitherto been biochemically or pharmacologically characterised. We used reverse-phase high-performance liquid chromatography (RP-HPLC) to separate the components of echidna venom and compared the chromatograms with those from platypus venom. The echidna venom appears to contain fewer proteins and peptides than platypus venom; however, it appears to have defensin-like peptides that behave similarly on RP-HPLC to those in platypus venom. Like platypus venom, echidna venom has peptidyl aminoacyl l/d-peptide isomerase activity. An RP-HPLC-based assay showed that the second amino acid residue, of a probe synthetic hexapeptide, was converted into the d-form, when incubated with echidna venom.


Australian Journal of Zoology | 2009

Platypus venom: source of novel compounds

Jennifer M. S. Koh; Paramjit S. Bansal; Allan M. Torres; Philip W. Kuchel

An anatomical feature of the platypus (Ornithorhynchus anatinus) that is seen in only one other mammal, the echidna, is that the male has a crural glandular system that produces venom that is used for defence and territorial–breeding functions; whether the echidna is similarly venomous is not yet established. Platypus venom contains many novel proteins and peptides that are different from those in reptilian venom. It also causes pain and symptoms that are not experienced by any other kind of envenomation. Five types of proteins and peptides have been isolated and identified from platypus venom, namely: defensin-like peptides (DLPs); Ornithorhynchus venom C-type natriuretic peptides (OvCNPs); Ornithorhynchus nerve growth factor; hyaluronidase; and l-to-d-peptide isomerase. The structures of DLPs and OvCNPs have already been studied and they are very similar to β-defensin-12 and mammalian C-type natriuretic peptides, respectively. A special mammalian l-to-d-peptide isomerase that is responsible for interconverting the l- and d-peptide isomers is also found in platypus venom. Isomerase activity has recently been discovered in platypus tissues other than the venom gland. It is possible that similar kinds of enzymes might exist in other mammals and play important, as yet unknown, biological roles. Considering the fact that some animal venoms have already been widely used in pharmaceutical applications, research into platypus venom may lead to the discovery of new molecules and potent drugs that are useful biomedical tools.


Cell Biology International | 2012

Cytoskeletal rearrangements in human red blood cells induced by snake venoms: light microscopy of shapes and NMR studies of membrane function

Tsz Wai Yau; Rhiannon P. Kuchel; Jennifer M. S. Koh; David Szekely; Peter Mirtschin; Philip W. Kuchel

RBCs (red blood cells) circulating through narrow blood capillaries withstand major deformation. The mechanical and chemical stresses commonly exerted on RBCs continue to attract interest for the study of membrane structure and function. Snake venoms are lethal biochemical ‘cocktails’ that often contain haemotoxins, metalloproteinases, myotoxins, neurotoxins, phosphodiesterases, phospholipases and proteases. We have monitored the effects of 4 snake venoms (Pseudechis guttatus, Oxyuranus scutellatus, Notechis scutatus and Naja kaouthia) on human RBCs using NMR spectroscopy, DIC (differential interference contrast) and confocal light microscopy. RBCs underwent reproducible stomatocytosis, with unusual geographical‐like indentations, spherocytosis, followed by rapid lysis. Confocal micrographs using a fluorescent dye linked to phalloidin showed that the change in morphology was associated with the aggregation of actin in the cytoskeleton. 31P NMR saturation transfer experiments recorded transport of the univalent anion HPA (hypophosphite) on a subsecond time scale, thereby reporting on the function of capnophorin or Band 3 linked to the cytoskeleton; anion‐exchange activity was substantially reduced by venom treatment. We propose a molecular‐cytological hypothesis for the shape and functional changes that is different from, or supplementary to, the more ‘traditional’ bilayer‐couple hypothesis more often used to account for similar morphological changes invoked by other reagents.


Journal of Proteome Research | 2016

Comparisons of Protein and Peptide Complexity in Poneroid and Formicoid Ant Venoms

Samira R. Aili; Axel Touchard; Jennifer M. S. Koh; Alain Dejean; Jérôme Orivel; Matthew P. Padula; Pierre Escoubas; Graham M. Nicholson

Animal venom peptides are currently being developed as novel drugs and bioinsecticides. Because ants use venoms for defense and predation, venomous ants represent an untapped source of potential bioactive toxins. This study compared the protein and peptide components of the poneroid ants Neoponera commutata, Neoponera apicalis, and Odontomachus hastatus and the formicoid ants Ectatomma tuberculatum, Ectatomma brunneum, and Myrmecia gulosa. 1D and 2D PAGE revealed venom proteins in the mass range <10 to >250 kDa. NanoLC-ESI-QTOF MS/MS analysis of tryptic peptides revealed the presence of common venom proteins and also many undescribed proteins. RP-HPLC separation followed by MALDI-TOF MS of the venom peptides also revealed considerable heterogeneity. It was found that the venoms contained between 144 and 1032 peptides with 5-95% of peptides in the ranges 1-4 and 1-8 kDa for poneroid and formicoid ants, respectively. By employing the reducing MALDI matrix 1,5-diaminonapthalene, up to 28 disulfide-bonded peptides were also identified in each of the venoms. In particular, the mass range of peptides from poneroid ants is lower than peptides from other venoms, indicating possible novel structures and pharmacologies. These results indicate that ant venoms represent an enormous, untapped source of novel therapeutic and bioinsecticide leads.

Collaboration


Dive into the Jennifer M. S. Koh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Escoubas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Allan M. Torres

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar

Axel Touchard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Petitclerc

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge