Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer Neville is active.

Publication


Featured researches published by Jennifer Neville.


international world wide web conferences | 2010

Modeling relationship strength in online social networks

Rongjing Xiang; Jennifer Neville; Monica Rogati

Previous work analyzing social networks has mainly focused on binary friendship relations. However, in online social networks the low cost of link formation can lead to networks with heterogeneous relationship strengths (e.g., acquaintances and best friends mixed together). In this case, the binary friendship indicator provides only a coarse representation of relationship information. In this work, we develop an unsupervised model to estimate relationship strength from interaction activity (e.g., communication, tagging) and user similarity. More specifically, we formulate a link-based latent variable model, along with a coordinate ascent optimization procedure for the inference. We evaluate our approach on real-world data from Facebook and LinkedIn, showing that the estimated link weights result in higher autocorrelation and lead to improved classification accuracy.


knowledge discovery and data mining | 2004

Why collective inference improves relational classification

David D. Jensen; Jennifer Neville; Brian Gallagher

Procedures for collective inference make simultaneous statistical judgments about the same variables for a set of related data instances. For example, collective inference could be used to simultaneously classify a set of hyperlinked documents or infer the legitimacy of a set of related financial transactions. Several recent studies indicate that collective inference can significantly reduce classification error when compared with traditional inference techniques. We investigate the underlying mechanisms for this error reduction by reviewing past work on collective inference and characterizing different types of statistical models used for making inference in relational data. We show important differences among these models, and we characterize the necessary and sufficient conditions for reduced classification error based on experiments with real and simulated data.


knowledge discovery and data mining | 2003

Learning relational probability trees

Jennifer Neville; David D. Jensen; Lisa Friedland; Michael Hay

Classification trees are widely used in the machine learning and data mining communities for modeling propositional data. Recent work has extended this basic paradigm to probability estimation trees. Traditional tree learning algorithms assume that instances in the training data are homogenous and independently distributed. Relational probability trees (RPTs) extend standard probability estimation trees to a relational setting in which data instances are heterogeneous and interdependent. Our algorithm for learning the structure and parameters of an RPT searches over a space of relational features that use aggregation functions (e.g. AVERAGE, MODE, COUNT) to dynamically propositionalize relational data and create binary splits within the RPT. Previous work has identified a number of statistical biases due to characteristics of relational data such as autocorrelation and degree disparity. The RPT algorithm uses a novel form of randomization test to adjust for these biases. On a variety of relational learning tasks, RPTs built using randomization tests are significantly smaller than other models and achieve equivalent, or better, performance.


international world wide web conferences | 2010

Randomization tests for distinguishing social influence and homophily effects

Timothy La Fond; Jennifer Neville

Relational autocorrelation is ubiquitous in relational domains. This observed correlation between class labels of linked instances in a network (e.g., two friends are more likely to share political beliefs than two randomly selected people) can be due to the effects of two different social processes. If social influence effects are present, instances are likely to change their attributes to conform to their neighbor values. If homophily effects are present, instances are likely to link to other individuals with similar attribute values. Both these effects will result in autocorrelated attribute values. When analyzing static relational networks it is impossible to determine how much of the observed correlation is due each of these factors. However, the recent surge of interest in social networks has increased the availability of dynamic network data. In this paper, we present a randomization technique for temporal network data where the attributes and links change over time. Given data from two time steps, we measure the gain in correlation and assess whether a significant portion of this gain is due to influence and/or homophily. We demonstrate the efficacy of our method on semi-synthetic data and then apply the method to a real-world social networks dataset, showing the impact of both influence and homophily effects.


knowledge discovery and data mining | 2005

Using relational knowledge discovery to prevent securities fraud

Jennifer Neville; Özgür Şimşek; David D. Jensen; John Komoroske; Kelly Palmer; Henry G. Goldberg

We describe an application of relational knowledge discovery to a key regulatory mission of the National Association of Securities Dealers (NASD). NASD is the worlds largest private-sector securities regulator, with responsibility for preventing and discovering misconduct among securities brokers. Our goal was to help focus NASDs limited regulatory resources on the brokers who are most likely to engage in securities violations. Using statistical relational learning algorithms, we developed models that rank brokers with respect to the probability that they would commit a serious violation of securities regulations in the near future. Our models incorporate organizational relationships among brokers (e.g., past coworker), which domain experts consider important but have not been easily used before now. The learned models were subjected to an extensive evaluation using more than 18 months of data unseen by the model developers and comprising over two person weeks of effort by NASD staff. Model predictions were found to correlate highly with the subjective evaluations of experienced NASD examiners. Furthermore, in all performance measures, our models performed as well as or better than the handcrafted rules that are currently in use at NASD.


very large data bases | 2011

Guided data repair

Mohamed Yakout; Ahmed K. Elmagarmid; Jennifer Neville; Mourad Ouzzani; Ihab F. Ilyas

In this paper we present GDR, a Guided Data Repair framework that incorporates user feedback in the cleaning process to enhance and accelerate existing automatic repair techniques while minimizing user involvement. GDR consults the user on the updates that are most likely to be beneficial in improving data quality. GDR also uses machine learning methods to identify and apply the correct updates directly to the database without the actual involvement of the user on these specific updates. To rank potential updates for consultation by the user, we first group these repairs and quantify the utility of each group using the decision-theory concept of value of information (VOI). We then apply active learning to order updates within a group based on their ability to improve the learned model. User feedback is used to repair the database and to adaptively refine the training set for the model. We empirically evaluate GDR on a real-world dataset and show significant improvement in data quality using our user guided repairing process. We also, assess the trade-off between the user efforts and the resulting data quality.


international conference on data mining | 2004

Dependency networks for relational data

Jennifer Neville; David D. Jensen

Instance independence is a critical assumption of traditional machine learning methods contradicted by many relational datasets. For example, in scientific literature datasets, there are dependencies among the references of a paper. Recent work on graphical models for relational data has demonstrated significant performance gains for models that exploit the dependencies among instances. In this paper, we present relational dependency networks (RDNs), a new form of graphical model capable of reasoning with such dependencies in a relational setting. We describe the details of RDN models and outline their strengths, most notably the ability to learn and reason with cyclic relational dependencies. We present RDN models learned on a number of real-world datasets, and evaluate the models in a classification context, showing significant performance improvements. In addition, we use synthetic data to evaluate the quality of model learning and inference procedures.


international conference on data engineering | 2008

Database Support for Probabilistic Attributes and Tuples

Sarvjeet Singh; Chris Mayfield; Rahul Shah; Sunil Prabhakar; Susanne E. Hambrusch; Jennifer Neville; Reynold Cheng

The inherent uncertainty of data present in numerous applications such as sensor databases, text annotations, and information retrieval motivate the need to handle imprecise data at the database level. Uncertainty can be at the attribute or tuple level and is present in both continuous and discrete data domains. This paper presents a model for handling arbitrary probabilistic uncertain data (both discrete and continuous) natively at the database level. Our approach leads to a natural and efficient representation for probabilistic data. We develop a model that is consistent with possible worlds semantics and closed under basic relational operators. This is the first model that accurately and efficiently handles both continuous and discrete uncertainty. The model is implemented in a real database system (PostgreSQL) and the effectiveness and efficiency of our approach is validated experimentally.


international conference on management of data | 2010

ERACER: a database approach for statistical inference and data cleaning

Chris Mayfield; Jennifer Neville; Sunil Prabhakar

Real-world databases often contain syntactic and semantic errors, in spite of integrity constraints and other safety measures incorporated into modern DBMSs. We present ERACER, an iterative statistical framework for inferring missing information and correcting such errors automatically. Our approach is based on belief propagation and relational dependency networks, and includes an efficient approximate inference algorithm that is easily implemented in standard DBMSs using SQL and user defined functions. The system performs the inference and cleansing tasks in an integrated manner, using shrinkage techniques to infer correct values accurately even in the presence of dirty data. We evaluate the proposed methods empirically on multiple synthetic and real-world data sets. The results show that our framework achieves accuracy comparable to a baseline statistical method using Bayesian networks with exact inference. However, our framework has wider applicability than the Bayesian network baseline, due to its ability to reason with complex, cyclic relational dependencies.


ACM Transactions on Knowledge Discovery From Data | 2014

Network Sampling: From Static to Streaming Graphs

Nesreen K. Ahmed; Jennifer Neville; Ramana Rao Kompella

Network sampling is integral to the analysis of social, information, and biological networks. Since many real-world networks are massive in size, continuously evolving, and/or distributed in nature, the network structure is often sampled in order to facilitate study. For these reasons, a more thorough and complete understanding of network sampling is critical to support the field of network science. In this paper, we outline a framework for the general problem of network sampling by highlighting the different objectives, population and units of interest, and classes of network sampling methods. In addition, we propose a spectrum of computational models for network sampling methods, ranging from the traditionally studied model based on the assumption of a static domain to a more challenging model that is appropriate for streaming domains. We design a family of sampling methods based on the concept of graph induction that generalize across the full spectrum of computational models (from static to streaming) while efficiently preserving many of the topological properties of the input graphs. Furthermore, we demonstrate how traditional static sampling algorithms can be modified for graph streams for each of the three main classes of sampling methods: node, edge, and topology-based sampling. Experimental results indicate that our proposed family of sampling methods more accurately preserve the underlying properties of the graph in both static and streaming domains. Finally, we study the impact of network sampling algorithms on the parameter estimation and performance evaluation of relational classification algorithms.

Collaboration


Dive into the Jennifer Neville's collaboration.

Top Co-Authors

Avatar

David D. Jensen

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Brian Gallagher

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge