Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer R. Lukes is active.

Publication


Featured researches published by Jennifer R. Lukes.


Journal of Heat Transfer-transactions of The Asme | 2007

Thermal conductivity of individual single-wall carbon nanotubes

Jennifer R. Lukes; Hongliang Zhong

Despite the significant amount of research on carbon nanotubes, the thermal conductivity of individual single-wall carbon nanotubes has not been well established. To date only a few groups have reported experimental data for these molecules. Existing molecular dynamics simulation results range from several hundred to 6600 W/m K and existing theoretical predictions range from several dozens to 9500 W/m K. To clarify the several-order-of-magnitude discrepancy in the literature, this paper utilizes molecular dynamics simulation to systematically examine the thermal conductivity of several individual (10, 10) single-wall carbon nanotubes as a function of length, temperature, boundary conditions and molecular dynamics simulation methodology. Nanotube lengths ranging from 5 nm to 40 nm are investigated. The results indicate that thermal conductivity increases with nanotube length, varying from about 10 W/m to 375 W/m K depending on the various simulation conditions. Phonon decay times on the order of hundreds of fs are computed. These times increase linearly with length, indicating ballistic transport in the nanotubes. A simple estimate of speed of sound, which does not require involved calculation of dispersion relations, is presented based on the heat current autocorrelation decay. Agreement with the majority of theoretical/computational literature thermal conductivity data is achieved for the nanotube lengths treated here. Discrepancies in thermal conductivity magnitude with experimental data are primarily attributed to length effects, although simulation methodology, stress, and intermolecular potential may also play a role. Quantum correction of the calculated results reveals thermal conductivity temperature dependence in qualitative agreement with experimental data.


Journal of Heat Transfer-transactions of The Asme | 2005

Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity

Yunfei Chen; Deyu Li; Jennifer R. Lukes; Arun Majumdar

Monte Carlo simulation is applied to investigate phonon transport in single crystalline Si nanowires. Phonon-phonon normal (N) and Umklapp (U) scattering processes are modeled with a genetic algorithm to satisfy energy and momentum conservation. The scattering rates of N and U scattering processes are found from first-order perturbation theory. The thermal conductivity of Si nanowires is simulated and good agreement is achieved with recent experimental data. In order to study the confinement effects on phonon transport in nanowires, two different phonon dispersions, one from experimental measurements on bulk Si and the other solved from elastic wave theory, are adopted in the simulation. The discrepancy between simulations using different phonon dispersions increases as the nanowire diameter decreases, which suggests that the confinement effect is significant when the nanowire diameter approaches tens of nanometers. It is found that the U scattering probability in Si nanowires is higher than that in hulk Si due to the decrease of the frequency gap between different modes and the reduced phonon group velocity. Simulation results suggest that the dispersion relation for nanowires obtained from elasticity theory should be used to evaluate nanowire thermal conductivity as the nanowire diameter is reduced to the sub-100 nm scale.


Journal of Heat Transfer-transactions of The Asme | 2000

Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity

Jennifer R. Lukes; Deyu Li; XinGang Liang; Chang-Lin Tien

This study uses the molecular dynamics computational technique to investigate the thermal conductivity of solid thin films in the direction perpendicular to the film plane. In order to establish a benchmark reference, the computations are based on the widely used Lennard-Jones argon model due to its agreement with experimental liquid-phase data, its physically meaningful parameters, and its simple two-body form. Thermal conductivity increases with film thickness, as expected from thin-film experimental data and theoretical predictions. The calculated values are roughly 30 percent higher than anticipated. Varying the boundary conditions, heat flux, and lateral dimensions of the films causes no observable change in the thermal conductivity values. The present study also delineates the conditions necessary for meaningful thermal conductivity calculations and offers recommendations for efficient simulations. This work shows that molecular dynamics, applied under the correct conditions, is a viable tool for calculating the thermal conductivity of solid thin films. More generally, it demonstrates the potential of molecular dynamics for ascertaining microscale thermophysical properties in complex structures.


Journal of Chemical Physics | 2000

Molecular dynamics investigation of thickness effect on liquid films

Jian-Gang Weng; Seungho Park; Jennifer R. Lukes; Chang-Lin Tien

This work applies the molecular dynamics simulation method to study a Lennard-Jones liquid thin film suspended in the vapor and to explore the film thickness effect on its stability. For the accurate estimation of local pressure distributions in the film, an improved method is proposed and used. Simulation results indicate that profiles of the local surface tension distribution vary widely with film thickness, while surface tension values and density profiles show little variation. As the film gets thinner, the two liquid–vapor interfacial regions begin to overlap and liquid-phase molecules in the center region of the film experience larger tension in the direction parallel to the film surface. Such interface overlapping is believed to destabilize the film and the occurrence of film rupture depends on the system temperature and the cross-sectional area of the computational domain.This work applies the molecular dynamics simulation method to study a Lennard-Jones liquid thin film suspended in the vapor and to explore the film thickness effect on its stability. For the accurate estimation of local pressure distributions in the film, an improved method is proposed and used. Simulation results indicate that profiles of the local surface tension distribution vary widely with film thickness, while surface tension values and density profiles show little variation. As the film gets thinner, the two liquid–vapor interfacial regions begin to overlap and liquid-phase molecules in the center region of the film experience larger tension in the direction parallel to the film surface. Such interface overlapping is believed to destabilize the film and the occurrence of film rupture depends on the system temperature and the cross-sectional area of the computational domain.


Journal of Heat Transfer-transactions of The Asme | 2008

Multicomponent Energy Conserving Dissipative Particle Dynamics: A General Framework for Mesoscopic Heat Transfer Applications

Anuj Chaudhri; Jennifer R. Lukes

A multicomponent framework for energy conserving dissipative particle dynamics (DPD) is presented for the first time in both dimensional and dimensionless forms. Explicit definitions for unknown scaling factors that are consistent with DPD convention are found by comparing the present, general dimensionless governing equations to the standard DPD expressions in the literature. When the scaling factors are chosen based on the solvent in a multicomponent system, the system of equations reduces to a set that is easy to handle computationally. A computer code based on this multicomponent framework was validated, under the special case of identical components, for one-dimensional transient and one- and two-dimensional steady-state heat conduction in a random DPD solid. The results, which compare well with existing DPD works and with analytical solutions in one and two dimensions, show the promise of energy conserving DPD for modeling heat transfer at mesoscopic length scales.


Journal of Chemical Physics | 2004

Thermal expansion and impurity effects on lattice thermal conductivity of solid argon

Yunfei Chen; Jennifer R. Lukes; Deyu Li; Juekuan Yang; Yonghua Wu

Thermal expansion and impurity effects on the lattice thermal conductivity of solid argon have been investigated with equilibrium molecular dynamics simulation. Thermal conductivity is simulated over the temperature range of 20-80 K. Thermal expansion effects, which strongly reduce thermal conductivity, are incorporated into the simulations using experimentally measured lattice constants of solid argon at different temperatures. It is found that the experimentally measured deviations from a T(-1) high-temperature dependence in thermal conductivity can be quantitatively attributed to thermal expansion effects. Phonon scattering on defects also contributes to the deviations. Comparison of simulation results on argon lattices with vacancy and impurity defects to those predicted from the theoretical models of Klemens and Ashegi et al. demonstrates that phonon scattering on impurities due to lattice strain is stronger than that due to differences in mass between the defect and the surrounding matrix. In addition, the results indicate the utility of molecular dynamics simulation for determining parameters in theoretical impurity scattering models under a wide range of conditions. It is also confirmed from the simulation results that thermal conductivity is not sensitive to the impurity concentration at high temperatures.


Microscale Thermophysical Engineering | 2004

MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTION IN NANOPOROUS THIN FILMS

Jennifer R. Lukes; Chang-Lin Tien

Molecular dynamics simulations of thermal conduction in nanoporous thin films are performed. Thermal conductivity displays an inverse temperature dependence for films with small pores and a much less pronounced dependence for larger pores. Increasing porosity reduces thermal conductivity, while pore shape has little effect except in the most anisotropic cases. The pores separate the film into local regions with distinctly different temperature profiles and thermal conductivities, and the effective film thermal conductivity is lowest when the pores are positioned in the center of the film. Such tunability by pore placement highlights new possibilities for engineering nanoscale thermal transport.


Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology | 2004

Thermal Conductivity of Single-Wall Carbon Nanotubes

Hongliang Zhong; Jennifer R. Lukes

Despite the significant amount of research on single-wall carbon nanotubes, their thermal conductivity has not been well established. To date only one experimental thermal conductivity measurement has been reported for these molecules around room temperature, with large uncertainty in the thermal conductivity values. Existing theoretical predictions based on molecular dynamics simulation range from several hundred to 6600 W/m-K. In an attempt to clarify the order-of magnitude discrepancy in the literature, this paper utilizes molecular dynamics simulation to systematically examine the thermal conductivity of several (10, 10) single-wall carbon nanotubes as a function of length, temperature, boundary conditions and molecular dynamics simulation methodology. The present results indicate that thermal conductivity ranges from about 30–300 W/m-K depending on the various simulation conditions. The results are unconverged and keep increasing at the longest tube length, 40 nm. Agreement with the majority of literature data is achieved for the tube lengths treated here. Discrepancies in thermal conductivity magnitude with experimental data are primarily attributed to length effects, although simulation methodology, stress, and intermolecular potential may also play a role. Quantum correction of the calculated results reveals thermal conductivity temperature dependence in qualitative agreement with experimental data.Copyright


Applied Physics Letters | 2001

Molecular dynamics simulation of the meniscus formation between two surfaces

Yunfei Chen; Jian-Gang Weng; Jennifer R. Lukes; Arunava Majumdar; Chang-Lin Tien

The molecular dynamics computational method is used to simulate meniscus formation around an asperity in a rough surface represented as a sinusoidal wave. Simulation results show that the meniscus formation depends on the interaction potential between the solid wall and the liquid atoms. For completely and partially dry substrates a meniscus cannot form around an asperity. For partially and completely wetting substrates the asperity helps to adsorb the fluid atoms and form a meniscus. These simulation results confirm that if the film thickness exceeds a critical value, the capillary pressure contributes strongly to stiction.


Journal of Heat Transfer-transactions of The Asme | 1999

Heat Transfer Enhancement by Fins in the Microscale Regime

F.-C. Chou; Jennifer R. Lukes; Chang-Lin Tien

The current literature contains many studies of microchannel and micro-pin-fin heat exchangers, but none of them consider the size effect on the thermal conductivity of channel and fin walls. The present study analyzes the effect of size (i.e., the microscale effect) on the microfin performance, particularly in the cryogenic regime where the microscale effect is often appreciable. The size effect reduces the thermal conductivity of microchannel and microfin walls and thus reduces the heat transfer rate. For this reason, heat transfer enhancement by microfins becomes even more important than for macroscale fins. The need for better understanding of heat transfer enhancement by microfins motivates the current study, which resolves three basic issues. First, it is found that the heat flow choking can occur even in the case of simple plate fins or pin fins in the microscale regime, although choking is usually caused by the accommodation of a cluster of fins at the fin tip. Second, this paper shows that the use of micro-plate-fin arrays yields a higher heat transfer enhancement ratio than the use of the micro-pin-fin arrays due to the stronger reduction of thermal conductivity in micro-pin-fins. The third issue is how the size effect influences the finmorexa0» thickness optimization. For convenience in design applications, an equation for the optimum fin thickness is established which generalizes the case without the size effect as first reported by Tuckerman and Pease.«xa0less

Collaboration


Dive into the Jennifer R. Lukes's collaboration.

Top Co-Authors

Avatar

Deyu Li

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

Chang-Lin Tien

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongliang Zhong

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jian-Gang Weng

University of California

View shared research outputs
Top Co-Authors

Avatar

Neil Zuckerman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge