Jennifer Schaeffer
Yerkes National Primate Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer Schaeffer.
Current Biology | 2008
Jared P. Taglialatela; Jamie L. Russell; Jennifer Schaeffer; William D. Hopkins
Brocas area, a cerebral cortical area located in the inferior frontal gyrus (IFG) of the human brain, has been identified as one of several critical regions associated with the motor planning and execution of language. Anatomically, Brocas area is most often larger in the left hemisphere, and functional imaging studies in humans indicate significant left-lateralized patterns of activation during language-related tasks. If, and to what extent, nonhuman primates, particularly chimpanzees, possess a homologous region that is involved in the production of their own communicative signals remains unknown. Here, we show that portions of the IFG as well as other cortical and subcortical regions in chimpanzees are active during the production of communicative signals. These findings are the first to provide direct evidence of the neuroanatomical structures associated with the production of communicative behaviors in chimpanzees. Significant activation in the left IFG in conjunction with other cortical and subcortical brain areas during the production of communicative signals in chimpanzees suggests that the neurological substrates underlying language production in the human brain may have been present in the common ancestor of humans and chimpanzees.
Journal of Human Evolution | 2011
William D. Hopkins; Kimberley A. Phillips; Amanda E. Bania; Sarah E. Calcutt; Molly Gardner; Jamie L. Russell; Jennifer Schaeffer; Elizabeth V. Lonsdorf; Stephen R. Ross; Steven J. Schapiro
Whether or not nonhuman primates exhibit population-level handedness remains a topic of considerable scientific debate. Here, we examined handedness for coordinated bimanual actions in a sample of 777 great apes including chimpanzees, bonobos, gorillas, and orangutans. We found population-level right-handedness in chimpanzees, bonobos and gorillas, but left-handedness in orangutans. Directional biases in handedness were consistent across independent samples of apes within each genus. We suggest that, contrary to previous claims, population-level handedness is evident in great apes but differs among species as a result of ecological adaptations associated with posture and locomotion. We further suggest that historical views of nonhuman primate handedness have been too anthropocentric, and we advocate for a larger evolutionary framework for the consideration of handedness and other aspects of hemispheric specialization among primates.
PLOS ONE | 2011
Jared P. Taglialatela; Jamie L. Russell; Jennifer Schaeffer; William D. Hopkins
The evolutionary origin of human language and its neurobiological foundations has long been the object of intense scientific debate. Although a number of theories have been proposed, one particularly contentious model suggests that human language evolved from a manual gestural communication system in a common ape-human ancestor. Consistent with a gestural origins theory are data indicating that chimpanzees intentionally and referentially communicate via manual gestures, and the production of manual gestures, in conjunction with vocalizations, activates the chimpanzee Broca’s area homologue – a region in the human brain that is critical for the planning and execution of language. However, it is not known if this activity observed in the chimpanzee Broca’s area is the result of the chimpanzees producing manual communicative gestures, communicative sounds, or both. This information is critical for evaluating the theory that human language evolved from a strictly manual gestural system. To this end, we used positron emission tomography (PET) to examine the neural metabolic activity in the chimpanzee brain. We collected PET data in 4 subjects, all of whom produced manual communicative gestures. However, 2 of these subjects also produced so-called attention-getting vocalizations directed towards a human experimenter. Interestingly, only the two subjects that produced these attention-getting sounds showed greater mean metabolic activity in the Broca’s area homologue as compared to a baseline scan. The two subjects that did not produce attention-getting sounds did not. These data contradict an exclusive “gestural origins” theory for they suggest that it is vocal signaling that selectively activates the Broca’s area homologue in chimpanzees. In other words, the activity observed in the Broca’s area homologue reflects the production of vocal signals by the chimpanzees, suggesting thast this critical human language region was involved in vocal signaling in the common ancestor of both modern humans and chimpanzees.
Cerebral Cortex | 2009
Jared P. Taglialatela; Jamie L. Russell; Jennifer Schaeffer; William D. Hopkins
The study of nonhuman primate vocal-auditory behavior continues to provide novel insights into the origins of human language. However, data on the neural systems involved in the perception and processing of conspecific vocalizations in great apes are virtually absent in the scientific literature, yet are critical for understanding the evolution of language. Here we used positron emission tomography to examine the neurological mechanisms associated with the perception of species-specific vocalizations in chimpanzees. The data indicate right-lateralized activity in the chimpanzee posterior temporal lobe, including the planum temporale, in response to certain calls, but not others. In addition, important differences are apparent when these data are compared with those published previously from monkey species suggesting that there may be marked differences in the way chimpanzees and macaque monkeys perceive and process conspecific vocalizations. These results provide the first evidence of the neural correlates of auditory perception in chimpanzees and offer unprecedented information concerning the origins of hemispheric specialization in humans.
Philosophical Transactions of the Royal Society B | 2012
William D. Hopkins; Jamie L. Russell; Jennifer Schaeffer
It has been hypothesized that neurological adaptations associated with evolutionary selection for throwing may have served as a precursor for the emergence of language and speech in early hominins. Although there are reports of individual differences in aimed throwing in wild and captive apes, to date there has not been a single study that has examined the potential neuroanatomical correlates of this very unique tool-use behaviour in non-human primates. In this study, we examined whether differences in the ratio of white (WM) to grey matter (GM) were evident in the homologue to Brocas area as well as the motor-hand area of the precentral gyrus (termed the KNOB) in chimpanzees that reliably throw compared with those that do not. We found that the proportion of WM in Brocas homologue and the KNOB was significantly higher in subjects that reliably throw compared with those that do not. We further found that asymmetries in WM within both brain regions were larger in the hemisphere contralateral to the chimpanzees preferred throwing hand. We also found that chimpanzees that reliably throw show significantly better communication abilities than chimpanzees that do not. These results suggest that chimpanzees that have learned to throw have developed greater cortical connectivity between primary motor cortex and the Brocas area homologue. It is suggested that during hominin evolution, after the split between the lines leading to chimpanzees and humans, there was intense selection on increased motor skills associated with throwing and that this potentially formed the foundation for left hemisphere specialization associated with language and speech found in modern humans.
Scientific Reports | 2015
William D. Hopkins; Alaine C. Keebaugh; Lisa A. Reamer; Jennifer Schaeffer; Steven J. Schapiro; Larry J. Young
Despite their genetic similarity to humans, our understanding of the role of genes on cognitive traits in chimpanzees remains virtually unexplored. Here, we examined the relationship between genetic variation in the arginine vasopressin V1a receptor gene (AVPR1A) and social cognition in chimpanzees. Studies have shown that chimpanzees are polymorphic for a deletion in a sequence in the 5′ flanking region of the AVPR1A, DupB, which contains the variable RS3 repetitive element, which has been associated with variation in social behavior in humans. Results revealed that performance on the social cognition task was significantly heritable. Furthermore, males with one DupB+ allele performed significantly better and were more responsive to socio-communicative cues than males homozygous for the DupB- deletion. Performance on a non-social cognition task was not associated with the AVPR1A genotype. The collective findings show that AVPR1A polymorphisms are associated with individual differences in performance on a receptive joint attention task in chimpanzees.
Behaviour | 2009
William D. Hopkins; Jamie L. Russell; Jennifer Schaeffer; M. Gardner; Steven J. Schapiro
There is continued debate over the factors influencing handedness in captive and wild primates, notably chimpanzees. Previous studies in wild chimpanzees have revealed population-level left handedness for termite fishing. Here we examined hand preferences and performance on a tool use task designed to simulate termite fishing in a sample of 190 captive chimpanzees to evaluate whether patterns of hand use in captive chimpanzees differed from those observed for wild apes. No population-level handedness was found for this task; however, significant sex differences in preference and performance were found, with males showing greater left handedness and poorer performance compared to females. We also found that the hand preferences of offspring were significantly positively correlated with the hand preferences of their mothers. Lastly, older females performed more slowly on the task compared to younger individuals. The overall results neither confirm nor reject previous hypotheses claiming that raising chimpanzees in captivity induces right-handedness, but rather suggest that other factors may account for differences in hand preferences for tool use seen in wild and captive chimpanzees.
PLOS ONE | 2010
William D. Hopkins; Jared P. Taglialatela; Jamie L. Russell; Talia Nir; Jennifer Schaeffer
Functional imaging studies in humans have localized the motor-hand region to a neuroanatomical landmark call the KNOB within the precentral gyrus. It has also been reported that the KNOB is larger in the hemisphere contralateral to an individuals preferred hand, and therefore may represent the neural substrate for handedness. The KNOB has also been neuronatomically described in chimpanzees and other great apes and is similarly associated with handedness. However, whether the chimpanzee KNOB represents the hand region is unclear from the extant literature. Here, we used PET to quantify neural metabolic activity in chimpanzees when engaged in unilateral reach-and-grasping responses and found significantly lateralized activation of the KNOB region in the hemisphere contralateral to the hand used by the chimpanzees. We subsequently constructed a probabilistic map of the KNOB region in chimpanzees in order to assess the overlap in consistency in the anatomical landmarks of the KNOB with the functional maps generated from the PET analysis. We found significant overlap in the anatomical and functional voxels comprising the KNOB region, suggesting that the KNOB does correspond to the hand region in chimpanzees. Lastly, from the probabilistic maps, we compared right- and left-handed chimpanzees on lateralization in grey and white matter within the KNOB region and found that asymmetries in white matter of the KNOB region were larger in the hemisphere contralateral to the preferred hand. These results suggest that neuroanatomical asymmetries in the KNOB likely reflect changes in connectivity in primary motor cortex that are experience dependent in chimpanzees and possibly humans.
Animal Cognition | 2014
Heidi Lyn; Jamie L. Russell; David A. Leavens; Kim A. Bard; Sarah T. Boysen; Jennifer Schaeffer; William D. Hopkins
Displaced reference is the ability to refer to an item that has been moved (displaced) in space and/or time, and has been called one of the true hallmarks of referential communication. Several studies suggest that nonhuman primates have this capability, but a recent experiment concluded that in a specific situation (absent entities), human infants display displaced reference but chimpanzees do not. Here, we show that chimpanzees and bonobos of diverse rearing histories are capable of displaced reference to absent and displaced objects. It is likely that some of the conflicting findings from animal cognition studies are due to relatively minor methodological differences, but are compounded by interpretation errors. Comparative studies are of great importance in elucidating the evolution of human cognition; however, greater care must be taken with methodology and interpretation for these studies to accurately reflect species differences.
Brain and Language | 2012
Catherine Wallez; Jennifer Schaeffer; Adrien Meguerditchian; Jacques Vauclair; Steven J. Schapiro; William D. Hopkins
Studies involving oro-facial asymmetries in nonhuman primates have largely demonstrated a right hemispheric dominance for communicative signals and conveyance of emotional information. A recent study on chimpanzee reported the first evidence of significant left-hemispheric dominance when using attention-getting sounds and rightward bias for species-typical vocalizations (Losin, Russell, Freeman, Meguerditchian, Hopkins & Fitch, 2008). The current study sought to extend the findings from Losin et al. (2008) with additional oro-facial assessment in a new colony of chimpanzees. When combining the two populations, the results indicated a consistent leftward bias for attention-getting sounds and a right lateralization for species-typical vocalizations. Collectively, the results suggest that both voluntary-controlled oro-facial and gestural communication might share the same left-hemispheric specialization and might have coevolved into a single integrated system present in a common hominid ancestor.