Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer Strunk is active.

Publication


Featured researches published by Jennifer Strunk.


Physical Chemistry Chemical Physics | 2011

Visible-light photocurrent response of TiO2–polyheptazine hybrids: evidence for interfacial charge-transfer absorption

Michal Bledowski; Lidong Wang; Ayyappan Ramakrishnan; Oleksiy V. Khavryuchenko; Volodymyr D. Khavryuchenko; P. Carlo Ricci; Jennifer Strunk; Till Cremer; Claudia Kolbeck; Radim Beranek

We investigated photoelectrodes based on TiO(2)-polyheptazine hybrid materials. Since both TiO(2) and polyheptazine are extremely chemically stable, these materials are highly promising candidates for fabrication of photoanodes for water photooxidation. The properties of the hybrids were experimentally determined by a careful analysis of optical absorption spectra, luminescence properties and photoelectrochemical measurements, and corroborated by quantum chemical calculations. We provide for the first time clear experimental evidence for the formation of an interfacial charge-transfer complex between polyheptazine (donor) and TiO(2) (acceptor), which is responsible for a significant red shift of absorption and photocurrent response of the hybrid as compared to both of the single components. The direct optical charge transfer from the HOMO of polyheptazine to the conduction band edge of TiO(2) gives rise to an absorption band centered at 2.3 eV (540 nm). The estimated potential of photogenerated holes (+1.7 V vs. NHE, pH 7) allows for photooxidation of water (+0.82 V vs. NHE, pH 7) as evidenced by visible light-driven (λ > 420 nm) evolution of dioxygen on hybrid electrodes modified with IrO(2) nanoparticles as a co-catalyst. The quantum-chemical simulations demonstrate that the TiO(2)-polyheptazine interface is a complex and flexible system energetically favorable for proton-transfer processes required for water oxidation. Apart from water splitting, this type of hybrid materials may also find further applications in a broader research area of solar energy conversion and photo-responsive devices.


ChemPhysChem | 2010

Probing the Reactivity of ZnO and Au/ZnO Nanoparticles by Methanol Adsorption: A TPD and DRIFTS Study†

Kevin Kähler; Marie Christine Holz; Markus Rohe; Jennifer Strunk; Martin Muhler

The adsorption of methanol on pure ZnO and Au-decorated ZnO nanoparticles and its thermal decomposition monitored by temperature-programmed desorption (TPD) experiments and by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), both applied under continuous flow conditions in fixed bed reactors, is reported. Two distinguishable methoxy species are formed during methanol adsorption on ZnO differing in the C-O stretching bands. During the subsequent TPD experiments two different H(2) peaks are observed, indicating the conversion of methoxy into formate species. By applying different heating rates, activation energies of 109 kJ mol(-1) and 127 kJ mol(-1) for the selective oxidation of the two methoxy species are derived. Correspondingly, the methoxy decomposition results in two distinguishable formate species, which are identified by the asymmetric and symmetric OCO stretching bands on pure ZnO and Au/ZnO. Based on the decreased intensities of the OH bands during methanol adsorption, which are specific for the various ZnO single crystal surfaces, on the different reactivities of these surfaces, and on the formate FTIR bands observed on ZnO single crystal surfaces, the two methoxy and the corresponding formate species are identified to be adsorbed on the exposed less reactive non-polar ZnO(10 10) surface and on the highly reactive polar ZnO(000 1) surface. The simultaneous formation of H(2), CO, and CO(2) at about 550-600 K during the TPD experiments indicate the decomposition of adsorbed formate species. The CO/CO(2) ratio decreases with increasing Au loading, and a broad band due to electronic transitions from donor sites to the conduction band is observed in the DRIFT spectra for the Au-decorated ZnO nanoparticles. Thus, the presence of the Au nanoparticles results in an enhanced reducibility of ZnO facilitating the generation of oxygen vacancies.


Chemsuschem | 2014

Photodeposition of copper and chromia on gallium oxide: the role of co-catalysts in photocatalytic water splitting.

G. Wilma Busser; Bastian Mei; Anna Pougin; Jennifer Strunk; Ramona Gutkowski; Wolfgang Schuhmann; Marc Georg Willinger; Robert Schlögl; Martin Muhler

Split second: The photocatalytic activity of gallium oxide (β-Ga2 O3) depends strongly on the co-catalysts CuOx and chromia, which can be efficiently deposited in a stepwise manner by photoreduction of Cu(2+) and CrO4 (2-). The water-splitting activity can be tuned by varying the Cu loading in the range 0.025-1.5 wt %, whereas the Cr loading is not affecting the rate as long as small amounts (such as 0.05 wt %) are present. Chromia is identified as highly efficient co-catalyst in the presence of CuOx : it is essential for the oxidation of water.


Chemcatchem | 2017

Photocatalytic CO2 Reduction Under Continuous Flow High‐Purity Conditions: Quantitative Evaluation of CH4 Formation in the Steady‐State

Martin Dilla; Robert Schlögl; Jennifer Strunk

In this study, the photocatalytic CO2 reduction on TiO2 P25 was investigated for the first time under high‐purity continuous flow conditions with gas chromatographic (GC) online detection of CH4 as the main product. The thorough photocatalytic cleaning procedure in humid helium prior to all measurements was conducted under continuous flow too and we were able to monitor the decrease of carbonaceous contaminant concentration. On addition of CO2 to the feed under illumination, an increase in CH4 concentration was observed, which clearly follows the increase in CO2 concentration in the reactor. It was also demonstrated that CH4 formation ceases as soon as the lamp is switched off, providing clear evidence that the formation of CH4 from CO2 is a photoinduced process. It was shown that higher CO2 concentration accelerated CH4 formation under steady‐state conditions up to a certain optimum. Higher CO2 concentrations lead to a decrease in CH4 formation. This observation is tentatively assigned to a limited availability of photogenerated charge carriers at the TiO2 surface, or a lack of suitable catalytically active sites. Traces of O2 in the reactor completely hinder CH4 formation, implying that the lack of concomitant oxygen evolution observed in previous measurements on TiO2 is likely beneficial for the overall process. This study represents a first step towards performing true steady‐state kinetic studies of photocatalytic CO2 reduction.


Physical Chemistry Chemical Physics | 2006

Microkinetic modeling of CO TPD spectra using coverage dependent microcalorimetric heats of adsorption

Jennifer Strunk; R. Naumann d’Alnoncourt; M. Bergmann; Sergey Litvinov; Xinyu Xia; Olaf Hinrichsen; Martin Muhler

CO adsorption on the ternary methanol synthesis Cu/ZnO/Al2O3 catalyst was studied in detail by means of adsorption microcalorimetry and flow temperature-programmed desorption (TPD). Based on these experimental data, we established a microkinetic analysis method, which provides information about the adsorption kinetics of CO on the catalyst surface. Experimentally derived microcalorimetric heats of adsorption were applied in a microkinetic model to simulate TPD curves with varying initial coverage. Two approaches were used: an integral approach based on evaluation of the integral heats of adsorption which predicts the experimental TPD curves roughly and provides first approximations for the preexponential factors. The second, more detailed approach was based on the simulation of the adsorption isotherm taking the experimentally determined coverage-dependence of the heat of adsorption into account. This approach led to a significantly improved agreement between experimental and simulated TPD curves. Moreover, it was possible to derive the standard entropy of adsorption. The general applicability of our approaches is demonstrated by analyzing the CO TPD and microcalorimetry data obtained with a binary ZnO-free Cu/Al2O3 catalyst.


Angewandte Chemie | 2018

Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges

Zhenyu Sun; Neetu Talreja; Hengcong Tao; John Texter; Martin Muhler; Jennifer Strunk; Jian-Feng Chen

The transformation of CO2 into fuels and chemicals by photocatalysis is a promising strategy to provide a long-term solution to mitigating global warming and energy-supply problems. Achievements in photocatalysis during the last decade have sparked increased interest in using sunlight to reduce CO2 . Traditional semiconductors used in photocatalysis (e.g. TiO2 ) are not suitable for use in natural sunlight and their performance is not sufficient even under UV irradiation. Some two-dimensional (2D) materials have recently been designed for the catalytic reduction of CO2 . These materials still require significant modification, which is a challenge when designing a photocatalytic process. An overarching aim of this Review is to summarize the literature on the photocatalytic conversion of CO2 by various 2D materials in the liquid phase, with special attention given to the development of novel 2D photocatalyst materials to provide a basis for improved materials.


Chemcatchem | 2017

Photocatalytic CO2 Reduction under Continuous Flow High-Purity Conditions: Influence of Light Intensity and H2O Concentration

Martin Dilla; Alina Mateblowski; Simon Ristig; Jennifer Strunk

The present study deals with fundamental investigations on the effect of light energy and intensity on the photocatalytic reduction of CO2 on TiO2 P25 under high purity continuous flow conditions. In accordance with previous works, gas chromatographic (GC) online detection identified CH4 as the main product of photocatalytic CO2 reduction. It was found that the product formation is dependent on the light intensity, which verifies that CH4 is formed in a photon induced process on TiO2. A variation of the light intensity revealed that charge carrier recombination is more strongly enhanced compared to the charge transfer reaction to adsorbed species. On these grounds, the rate of CH4 formation increases only by the square root of the light intensity. Furthermore, product formation is predominantly a UV photon driven process. A further part of this study investigated the effect of H2O on the CH4 formation. The photocatalytic removal of carbon‐containing species and the CO2 reduction can already proceed with traces of adsorbed H2O, whereas a continuous flow of gaseous H2O results in an inhibition of product formation. Based on our study, we can identify highly promising routes for photocatalyst improvement.


Topics in Catalysis | 2017

Vibrational Spectroscopy of Oxide Overlayers

Jennifer Strunk; Miguel A. Bañares; Israel E. Wachs

Transition metal oxide overlayers are an important class of heterogeneous catalysts (sometimes referred to as monolayer catalysts), both for model studies and numerous industrial processes. To determine the molecular structures in such amorphous thin layers requires application of characterization methods that can perform in the absence of long-range order and can distinguish between different molecular structures of the same metal oxide (e.g., isolated VO4, isolated VO5, isolated VO6, dimeric V2O7, oligomeric (VO3)n, etc.). Vibrational spectroscopy (IR and Raman) is the method of choice for this purpose since it can discriminate among multiple molecular structures and can function at high temperatures and pressures in presence of reactive gas phases (oxidizing, reducing and in between). Thus, IR and Raman spectroscopy uniquely provide access to in situ and operando molecular spectroscopy studies under relevant catalytic reaction conditions. In the present review, a comprehensive overview of the various possibilities to structurally and chemically characterize oxide overlayers with vibrational spectroscopy is presented and the progress achieved so far in this field is summarized. The surface molecular structures of supported transition metal oxide layers on oxide supports are described in detail, focusing in particular on those vibrational modes that can be used for precise molecular structural determination. The structural response of such surface oxide species to environmental conditions (ambient, dehydrated, reduced, reaction conditions) is reviewed. The approaches employed to characterize adsorption and reaction sites by the adsorption of suitable probe molecules or by performing in situ or operando studies will be discussed in detail. Additionally, the use of vibrational spectroscopy to study more complex systems will be highlighted, such as the formation of native oxide overlayers on complex oxides or even metal particles (e.g., during strong metal–support interactions).


Chemcatchem | 2018

Proof of Equivalent Catalytic Functionality upon Photon-Induced and Thermal Activation of Supported Isolated Vanadia Species in Methanol Oxidation

Bianca Kortewille; Israel E. Wachs; Niklas Cibura; Oliver Pfingsten; G. Bacher; Martin Muhler; Jennifer Strunk

In this study, evidence is provided that isolated surface vanadia (VO4) species on SiO2 can similarly act as a thermal heterogeneous catalyst and as a heterogeneous photocatalyst. Structurally identical surface VO4 species catalyze the selective oxidation of methanol both by thermal activation and by UV‐light induction. Selectivity to formaldehyde appears to be unity. For the photocatalytic reaction at room temperature, formaldehyde desorption is rate limiting. With larger agglomerates or V2O5 nanoparticles, on the contrary, only the thermal reaction is feasible. This is tentatively attributed to the different positions of electronic states (HOMO/LUMO, valence/conduction band) on the electrochemical energy scale owing to the quantum size effect. Besides providing new fundamental insight into the mode of action of nanosized photocatalysts, our results demonstrate that tuning the photocatalytic reactivity of supported transition‐metal oxides by adjusting the degree of agglomeration is feasible.


Topics in Catalysis | 2017

Probing Oxide Reduction and Phase Transformations at the Au-TiO2 Interface by Vibrational Spectroscopy

Anna Pougin; Alexander Lüken; Christina Klinkhammer; Dennis Hiltrop; Max Kauer; Katharina Tölle; Martina Havenith-Newen; Karina Morgenstern; Wolfgang Grünert; Martin Muhler; Jennifer Strunk

By a combination of FT-NIR Raman spectroscopy, infrared spectroscopy of CO adsorption under ultrahigh vacuum conditions (UHV-IR) and Raman spectroscopy in the line scanning mode the formation of a reduced titania phase in a commercial Au/TiO2 catalyst and in freshly prepared Au/anatase catalysts was detected. The reduced phase, formed at the Au-TiO2 interface, can serve as nucleation point for the formation of stoichiometric rutile. TinO2n−1 Magnéli phases, structurally resembling the rutile phase, might be involved in this process. The formation of the reduced phase and the rutilization process is clearly linked to the presence of gold nanoparticles and it does not proceed under similar conditions with the pure titania sample. Phase transformations might be both thermally or light induced, however, the colloidal deposition synthesis of the Au/TiO2 catalysts is clearly ruled out as cause for the formation of the reduced phase.

Collaboration


Dive into the Jennifer Strunk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinyu Xia

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

Anna Pougin

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

Bastian Mei

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

Bernd Meyer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christof Wöll

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge