Jennifer T. Brisbin
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer T. Brisbin.
Animal Health Research Reviews | 2008
Jennifer T. Brisbin; Joshua Gong; Shayan Sharif
Abstract The chicken gut-associated lymphoid tissue is made up of a number of tissues and cells that are responsible for generating mucosal immune responses and maintaining intestinal homeostasis. The normal chicken microbiota also contributes to this via the ability to activate both innate defense mechanisms and adaptive immune responses. If left uncontrolled, immune activation in response to the normal microbiota would pose a risk of excessive inflammation and intestinal damage. Therefore, it is important that immune responses to the normal microbiota be under strict regulatory control. Through studies of mammals, it has been established that the mucosal immune system has specialized regulatory and anti-inflammatory mechanisms for eliminating or tolerating the normal microbiota. The mechanisms that exist in the chicken to control host responses to the normal microbiota, although assumed to be similar to that of mammals, have not yet been fully described. This review summarizes what is currently known about the host response to the intestinal microbiota, particularly in the chicken.
Clinical and Vaccine Immunology | 2008
Mohammad Reza Akbari; Hamid R. Haghighi; James R. Chambers; Jennifer T. Brisbin; Leah R. Read; Shayan Sharif
ABSTRACT Several strategies currently exist for control of Salmonella enterica serovar Typhimurium colonization in the chicken intestine, among which the use of probiotics is of note. Little is known about the underlying mechanisms of probiotic-mediated reduction of Salmonella colonization. In this study, we asked whether the effect of probiotics is mediated by antimicrobial peptides, including avian beta-defensins (also called gallinacins) and cathelicidins. Four treatment groups were included in this study: a negative-control group, a probiotic-treated group, a Salmonella-infected group, and a probiotic-treated and Salmonella-infected group. On days 1, 3, and 5 postinfection (p.i.), the cecal tonsils were removed, and RNA was extracted and used for measurement of avian beta-defensin 1 (AvBD1), AvBD2, AvBD4, AvBD6, and cathelicidin gene expression by real-time PCR. The expressions of all avian beta-defensins and cathelicidin were detectable in all groups, irrespective of treatment and time point. Probiotic treatment and Salmonella infection did not affect the expression of any of the investigated genes on day 1 p.i. Furthermore, probiotic treatment had no significant effect on the expression of the genes at either 3 or 5 days p.i. However, the expression levels of all five genes were significantly increased (P < 0.05) in response to Salmonella infection at 3 and 5 days p.i. However, administration of probiotics eliminated the effect of Salmonella infection on the expression of antimicrobial genes. These findings indicate that the expression of antimicrobial peptides may be repressed by probiotics in combination with Salmonella infection or, alternatively, point to the possibility that, due to a reduction in Salmonella load in the intestine, these genes may not be induced.
Clinical and Vaccine Immunology | 2011
Jennifer T. Brisbin; Joshua Gong; Shahriar Orouji; Jessica Esufali; Amirul Islam Mallick; Payvand Parvizi; Patricia E. Shewen; Shayan Sharif
ABSTRACT Commensal microbes in the intestine are in constant interaction with host cells and play a role in shaping the immune system. Lactobacillus acidophilus, Lactobacillus reuteri, and Lactobacillus salivarius are members of the chicken intestinal microbiota and have been shown to induce different cytokine profiles in mononuclear cells in vitro. The objective of the present study was to examine the effects of these bacteria individually or in combination on the induction of antibody- and cell-mediated immune responses in vivo. The birds received lactobacilli weekly via oral gavage starting on day of hatch and subsequently, at 14 and 21 days, were immunized with sheep red blood cells (SRBC), keyhole limpet hemocyanin (KLH), Newcastle disease virus vaccine, and infectious bursal disease virus vaccine. Antibody responses in serum were measured weekly for 4 weeks beginning on the day of primary immunization. The cell-mediated immune response was evaluated at 21 days postimmunization by measurement of gamma interferon (IFN-γ) production in splenocytes stimulated with inactivated vaccine antigens. L. salivarius-treated birds had significantly more serum antibody to SRBC and KLH than birds that were not treated with probiotics. L. salivarius-treated birds also had decreased cell-mediated immune responses to recall antigen stimulation. L. reuteri treatment did not significantly affect the systemic immune response, while L. acidophilus treatment increased the antibody response to KLH. These results indicate that systemic antibody- and cell-mediated immune responses can be modulated by oral treatment with lactobacilli but that these bacteria may vary in their ability to modulate the immune response.
PLOS ONE | 2014
Neda Barjesteh; Shahriar Behboudi; Jennifer T. Brisbin; Alexander Ian Villanueva; Éva Nagy; Shayan Sharif
Chicken macrophages express several receptors for recognition of pathogens, including Toll-like receptors (TLRs). TLRs bind to pathogen-associated molecular patterns (PAMPs) derived from bacterial or viral pathogens leading to the activation of macrophages. Macrophages play a critical role in immunity against viruses, including influenza viruses. The present study was designed to test the hypothesis that treatment of chicken macrophages with TLR ligands reduces avian influenza replication. Furthermore, we sought to study the expression of some of the key mediators involved in the TLR-mediated antiviral responses of macrophages. Chicken macrophages were treated with the TLR2, 3, 4, 7 and 21 ligands, Pam3CSK4, poly(I:C), LPS, R848 and CpG ODN, respectively, at different doses and time points pre- and post-H4N6 avian influenza virus (AIV) infection. The results revealed that pre-treatment of macrophages with Pam3CSK4, LPS and CpG ODN reduced the replication of AIV in chicken macrophages. In addition, the relative expression of genes involved in inflammatory and antiviral responses were quantified at 3, 8 and 18 hours post-treatment with the TLR2, 4 and 21 ligands. Pam3CSK4, LPS and CpG ODN increased the expression of interleukin (IL)-1β, interferon (IFN)-γ, IFN-β and interferon regulatory factor (IFR) 7. The expression of these genes correlated with the reduction of viral replication in macrophages. These results shed light on the process of immunity to AIV in chickens.
Dna Sequence | 2007
Sarah Wheaton; Melissa D. Lambourne; Aimie J. Sarson; Jennifer T. Brisbin; Ashraf Mayameei; Shayan Sharif
Toll-like receptors (TLRs) trigger the innate immune system by responding to specific components of microorganisms. MyD88 and TRIF are Toll/interleukin (IL)-1 (TIR)-domain containing adapters, which play essential roles in TLR-mediated signalling via the MyD88-dependant and -independent pathways, respectively. Genes encoding several TLRs have been identified in the chicken genome, however, elements of their signalling pathways have not been well characterized. Here we describe the cloning of chicken MyD88 and TRIF orthologs, and examine the spatial and temporal expression of these genes. The chicken MyD88 cDNA was shown to have an open reading frame (ORF) of 1104 bp, encoding a predicted protein sequence of 368 aa, 8 aa short of a previously published coding sequence due to a premature stop codon. MyD88 gene expression was detected in each tissue tested except in muscle. The chicken TRIF cDNA possessed an ORF of 2205 bp, encoding a predicted protein sequence of 735 aa, which shared 37.3% similarity and 28.9% identity to human TRIF protein sequence. TRIF was ubiquitously expressed in all tissues.
Viral Immunology | 2008
Aimie J. Sarson; Mohamed Faizal Abdul-Careem; Leah R. Read; Jennifer T. Brisbin; Shayan Sharif
Cytotoxic host responses to Mareks disease virus (MDV) have been attributed to both natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). However, the mechanisms of cell lysis initiated by these cytotoxic responses during MDV infection are not well defined. Therefore, the current study was aimed at elucidating the molecular mechanisms of host cytotoxic responses to MDV infection by investigating the expression of genes in the cell lysis pathway involving granzyme A. Genes encoding cytolytic proteins, NK lysin, and granzyme A were upregulated during early stages of infection, whereas the genes encoding major histocompatibility complex (MHC) class I and the DNA repair and apoptosis protein, poly(ADP-ribose) polymerase (PARP), were downregulated. These findings shed more light on the mechanisms of host response to MDV infection in chickens.
Viral Immunology | 2012
Payvand Parvizi; Amirul Islam Mallick; Kamran Haq; Hamid R. Haghighi; Shahriar Orouji; Niroshan Thanthrige-Don; Michael St. Paul; Jennifer T. Brisbin; Leah R. Read; Shahriar Behboudi; Shayan Sharif
Mareks disease (MD) is caused by Mareks disease virus (MDV). Various vaccines including herpesvirus of turkeys (HVT) have been used to control this disease. However, HVT is not able to completely protect against very virulent strains of MDV. The objective of this study was to determine whether a vaccination protocol consisting of HVT and a Toll-like receptor (TLR) ligand could enhance protective efficacy of vaccination against MD. Hence, chickens were immunized with HVT and subsequently treated with synthetic double-stranded RNA polyriboinosinic polyribocytidylic [poly(I:C)], a TLR3 ligand, before or after being infected with a very virulent strain of MDV. Among the groups that were HVT-vaccinated and challenged with MDV, the lowest incidence of tumors was observed in the group that received poly(I:C) before and after MDV infection. Moreover, the groups that received a single poly(I:C) treatment either before or after MDV infection were better protected against MD tumors compared to the group that only received HVT. No association was observed between viral load, as determined by MDV genome copy number, and the reduction in tumor formation. Overall, the results presented here indicate that poly(I:C) treatment, especially when it is administered prior to and after HVT vaccination, enhances the efficacy of HVT vaccine and improves protection against MDV.
Poultry Science | 2009
Huaijun Zhou; Joshua Gong; Jennifer T. Brisbin; Hai Yu; Aimie J. Sarson; Weiduo Si; Shayan Sharif; Yanming Han
Necrotic enteritis is a disease caused by Clostridium perfringens, which threatens poultry production in the absence of dietary antibiotics. A total number of 600 Ross broilers were reared in 12 pens with each hosting 50 birds. Each 6 pens of birds were fed medicated (bacitracin at 55 mg/kg) or nonmedicated starter diets immediately after the chicks were placed. At d 18, birds were challenged with C. perfringens (10(7) cfu/mL mixed with feed). Spleens were collected from 12 birds of each group (2 birds per pen randomly) at d 18 (before infection), 19, 20, and 22. A low-density chicken immune microarray was used to study gene expression profiling of host response to C. perfringens infection. Six biological replicates (2 birds per biological replicate) for each treatment group were labeled with either Cy5 or Cy3 with dye swap. A total of 24 arrays were used for this study. Gene signal intensity was globally normalized by locally weighted regression and smoothing scatter plots and expressed on a natural log scale. A mixed model including treatment, time, array, subgrid (random effect), dye, and all interactions among treatment and time was used to identify differentially expressed genes between postinfection vs. preinfection, among postinfections, and between medication treatments, at the 5% significance level. The results indicated subtle medication effects on gene expression of these immune-related genes compared with bacterial infection effect. Our findings strongly suggest that both cell-mediated and antibody-mediated immune responses via MHC class I and II systems were actively involved in the host defense against C. perfringens infection in broilers. The unique cytokine signaling pathway and apoptosis cascade found in the study provide a new insight of molecular regulation of host immune response. Collectively, the findings of the present study will shed light on the molecular mechanisms underlying C. perfringens infection in broilers.
Poultry Science | 2008
Jennifer T. Brisbin; Joshua Gong; C. A. Lusty; Parviz M. Sabour; B. Sanei; Yanming Han; P. E. Shewen; Shayan Sharif
Subtherapeutic and prophylactic doses of virginiamycin are capable of altering the intestinal microbiota as well as increasing several growth parameters in chickens. In spite of the fact that the microbiota plays a role in shaping the hosts immune system, little information is available on the effects of in-feed antibiotics on the chicken immune system. The objective of this study was to examine the effects of an antibiotic, virginiamycin, on the development of antibody responses. Chickens were fed diets containing no antibiotics, along with either subtherapeutic (11 ppm) or prophylactic (22 ppm) doses of virginiamycin. Chickens were then immunized with keyhole limpet hemocyanin (KLH) and sheep red blood cells systemically, and with BSA and KLH orally. Although antibodies were detected against BSA in the intestinal contents of birds that were orally immunized, there was no difference among different treatment groups. Systemic IgG, and to a lesser extent IgM, antibody responses to KLH were greater (P < 0.05) in birds fed a diet containing 11 or 22 ppm of virginiamycin compared with control birds fed no antibiotic. No treatment effect was found in the sheep red blood cell-immunized birds. Results of the present study implicate virginiamycin in enhancing antibody responses to some antigens in chickens. Further studies are required to determine to what extent these effects on antibody response are mediated through changes in the composition of the microbiota.
PLOS ONE | 2014
X. Yang; Jennifer T. Brisbin; Hai Yu; Qi Wang; Fugui Yin; Yonggang Zhang; Parviz M. Sabour; Shayan Sharif; Joshua Gong
Background Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. Methodology/Principal Findings In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3–1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (106–7 CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (104 CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. Conclusions/Significance The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one of the strategies for controlling Salmonella infection in chickens.