Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer Tsoi is active.

Publication


Featured researches published by Jennifer Tsoi.


Science | 2013

An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells

D. Rohle; Janeta Popovici-Muller; Nicolaos Palaskas; Sevin Turcan; Christian Grommes; Carl Campos; Jennifer Tsoi; Owen Clark; Barbara Oldrini; Evangelia Komisopoulou; Kaiko Kunii; Alicia Pedraza; Stefanie Schalm; Lee Silverman; Alexandra Miller; Fang Wang; Hua Yang; Yue Chen; Andrew Kernytsky; Marc K. Rosenblum; Wei Liu; Scott A. Biller; Shinsan M. Su; Cameron Brennan; Timothy A. Chan; Thomas G. Graeber; Katharine E. Yen; Ingo K. Mellinghoff

IDHology Among the most exciting drug targets to emerge from cancer genome sequencing projects are two related metabolic enzymes, isocitrate dehydrogenases 1 and 2 (IDH1, IDH2). Mutations in the IDH1 and IDH2 genes are common in certain types of human cancer. Whether inhibition of mutant IDH activity might offer therapeutic benefits is unclear (see the Perspective by Kim and DeBerardinis). F. Wang et al. (p. 622, published online 4 April) isolated a small molecule that selectively inhibits mutant IDH2, describe the structural details of its binding to the mutant enzyme, and show that this compound suppresses the growth of patient-derived leukemia cells harboring the IDH2 mutation. Rohle et al. (p. 626, published online 4 April) show that a small molecule inhibitor of IDH1 selectively slows the growth of patient-derived brain tumor cells with the IDH1 mutation. A small molecule that inhibits a mutant enzyme in tumors slows malignant growth by inducing cancer cell differentiation. [Also see Perspective by Kim and DeBerardinis] The recent discovery of mutations in metabolic enzymes has rekindled interest in harnessing the altered metabolism of cancer cells for cancer therapy. One potential drug target is isocitrate dehydrogenase 1 (IDH1), which is mutated in multiple human cancers. Here, we examine the role of mutant IDH1 in fully transformed cells with endogenous IDH1 mutations. A selective R132H-IDH1 inhibitor (AGI-5198) identified through a high-throughput screen blocked, in a dose-dependent manner, the ability of the mutant enzyme (mIDH1) to produce R-2-hydroxyglutarate (R-2HG). Under conditions of near-complete R-2HG inhibition, the mIDH1 inhibitor induced demethylation of histone H3K9me3 and expression of genes associated with gliogenic differentiation. Blockade of mIDH1 impaired the growth of IDH1-mutant—but not IDH1–wild-type—glioma cells without appreciable changes in genome-wide DNA methylation. These data suggest that mIDH1 may promote glioma growth through mechanisms beyond its well-characterized epigenetic effects.


Science Translational Medicine | 2015

Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma

Siwen Hu-Lieskovan; Stephen Mok; Blanca Homet Moreno; Jennifer Tsoi; Lidia Robert; Lucas Goedert; Elaine M. Pinheiro; Richard C. Koya; Thomas G. Graeber; Begoña Comin-Anduix; Antoni Ribas

MEK inhibition enhanced the antitumor activity of combined BRAF inhibition and immunotherapy. Melanoma’s triple threat Combination therapy is the favored approach to fight drug-resistant cancer. For BRAF-mutated melanoma, combining a BRAF inhibitor and checkpoint inhibitors was hoped to improve the antitumor response; however, an early clinical trial was stopped because of liver toxicity. Hu-Lieskovan et al. test the addition of MEK [MAPK (mitogen-activated protein kinase) kinase] inhibitors to this combination therapy in an effort to potentiate the MAPK inhibition of BRAF inhibitors while concurrently decreasing the toxicity. They show in a mouse model of BRAFV600E-driven melanoma that triple therapy with BRAF and MEK inhibitors together with adoptive cell transfer (ACT) immunotherapy induced complete tumor regression in a manner consistent with immune activation. In addition, replacing ACT with anti-PD1 in the triple therapy had similar results, supporting the testing of MEK and BRAF inhibitions with various immunotherapies in patients with BRAF-mutated melanoma. Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA4 antibody ipilimumab was terminated early because of substantial liver toxicities. MEK [MAPK (mitogen-activated protein kinase) kinase] inhibitors can potentiate the MAPK inhibition in BRAF mutant cells while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild-type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAFV600E-driven melanoma, SM1, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors, and improved in vivo cytotoxicity. Single-agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and major histocompatibility complex (MHC) expression and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested the combination of dabrafenib, trametinib, and anti-PD1 therapy in SM1 tumors, and observed superior antitumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAFV600E mutant metastatic melanoma.


Nature Communications | 2014

Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma

Judith Müller; Oscar Krijgsman; Jennifer Tsoi; Lidia Robert; Willy Hugo; Chunying Song; Xiangju Kong; Patricia A. Possik; Paulien Cornelissen-Steijger; Marnix H. Geukes Foppen; Kristel Kemper; Colin R. Goding; Ultan McDermott; Christian U. Blank; John B. A. G. Haanen; Thomas G. Graeber; Antoni Ribas; Roger S. Lo; Daniel S. Peeper

Increased expression of the Microphthalmia-associated transcription factor (MITF) contributes to melanoma progression and resistance to BRAF pathway inhibition. Here we show that the lack of MITF is associated with more severe resistance to a range of inhibitors, while its presence is required for robust drug responses. Both in primary and acquired resistance, MITF levels inversely correlate with the expression of several activated receptor tyrosine kinases, most frequently AXL. The MITF-low/AXL-high/drug-resistance phenotype is common among mutant BRAF and NRAS melanoma cell lines. The dichotomous behaviour of MITF in drug response is corroborated in vemurafenib-resistant biopsies, including MITF-high and -low clones in a relapsed patient. Furthermore, drug cocktails containing AXL inhibitor enhance melanoma cell elimination by BRAF or ERK inhibition. Our results demonstrate that a low MITF/AXL ratio predicts early resistance to multiple targeted drugs, and warrant clinical validation of AXL inhibitors to combat resistance of BRAF and NRAS mutant MITF-low melanomas.


Clinical Cancer Research | 2014

CTLA4 Blockade Broadens the Peripheral T-Cell Receptor Repertoire

Lidia Robert; Jennifer Tsoi; Xiaoyan Wang; Ryan Emerson; Blanca Homet; Thinle Chodon; Stephen Mok; Rong-Rong Huang; Alistair J. Cochran; Begoña Comin-Anduix; Richard C. Koya; Thomas G. Graeber; Harlan Robins; Antoni Ribas

Purpose: To evaluate the immunomodulatory effects of cytotoxic T–lymphocyte-associated protein 4 (CTLA4) blockade with tremelimumab in peripheral blood mononuclear cells (PBMC). Experimental Design: We used next-generation sequencing to study the complementarity-determining region 3 (CDR3) from the rearranged T-cell receptor (TCR) variable beta (V-beta) in PBMCs of 21 patients, at baseline and 30 to 60 days after receiving tremelimumab. Results: After receiving tremelimumab, there was a median of 30% increase in unique productive sequences of TCR V-beta CDR3 in 19 out of 21 patients, and a median decrease of 30% in only 2 out of 21 patients. These changes were significant for richness (P = 0.01) and for Shannon index diversity (P = 0.04). In comparison, serially collected PBMCs from four healthy donors did not show a significant change in TCR V-beta CDR3 diversity over 1 year. There was a significant difference in the total unique productive TCR V-beta CDR3 sequences between patients experiencing toxicity with tremelimumab compared with patients without toxicity (P = 0.05). No relevant differences were noted between clinical responders and nonresponders. Conclusions: CTLA4 blockade with tremelimumab diversifies the peripheral T-cell pool, representing a pharmacodynamic effect of how this class of antibodies modulates the human immune system. Clin Cancer Res; 20(9); 2424–32. ©2014 AACR.


BMC Cancer | 2015

Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF inhibition

Stephen Mok; Jennifer Tsoi; Richard C. Koya; Siwen Hu-Lieskovan; Brian L. West; Gideon Bollag; Thomas G. Graeber; Antoni Ribas

BackgroundMalignant melanoma is an aggressive tumor type that often develops drug resistance to targeted therapeutics. The production of colony stimulating factor 1 (CSF-1) in tumors recruits myeloid cells such as M2-polarized macrophages and myeloid derived suppressor cells (MDSC), leading to an immune suppressive tumor milieu.MethodsWe used the syngeneic mouse model of BRAFV600E-driven melanoma SM1, which secretes CSF-1, to evaluate the ability of the CSF-1 receptor (CSF-1R) inhibitor PLX3397 to improve the antitumor efficacy of the oncogenic BRAF inhibitor vemurafenib.ResultsCombined BRAF and CSF-1R inhibition resulted in superior antitumor responses compared with either therapy alone. In mice receiving PLX3397 treatment, a dramatic reduction of tumor-infiltrating myeloid cells (TIM) was observed. In this model, we could not detect a direct effect of TIMs or pro-survival cytokines produced by TIMs that could confer resistance to PLX4032 (vemurafenib). However, the macrophage inhibitory effects of PLX3397 treatment in combination with the paradoxical activation of wild type BRAF-expressing immune cells mediated by PLX4032 resulted in more tumor-infiltrating lymphocytes (TIL). Depletion of CD8+ T-cells abrogated the antitumor response to the combination therapy. Furthermore, TILs isolated from SM1 tumors treated with PLX3397 and PLX4032 displayed higher immune potentiating activity.ConclusionsThe combination of BRAF-targeted therapy with CSF-1R blockade resulted in increased CD8 T-cell responses in the SM1 melanoma model, supporting the ongoing evaluation of this therapeutic combination in patients with BRAFV600 mutant metastatic melanoma.


Cancer immunology research | 2016

Response to Programmed Cell Death-1 Blockade in a Murine Melanoma Syngeneic Model Requires Costimulation, CD4, and CD8 T Cells.

Blanca Homet Moreno; Jesse M. Zaretsky; Angel Garcia-Diaz; Jennifer Tsoi; Giulia Parisi; Lidia Robert; Katrina Meeth; Abibatou Ndoye; Marcus Bosenberg; Ashani T. Weeraratna; Thomas G. Graeber; Begoña Comin-Anduix; Siwen Hu-Lieskovan; Antoni Ribas

Although blockade of the PD-1 pathway has been successfully used to treat various cancers, how this modulates host–tumor interactions is not well understood. Additional mechanisms beyond licensing the final effector phase of killer T cells were identified. The programmed cell death protein 1 (PD-1) limits effector T-cell functions in peripheral tissues, and its inhibition leads to clinical benefit in different cancers. To better understand how PD-1 blockade therapy modulates the tumor–host interactions, we evaluated three syngeneic murine tumor models, the BRAFV600E-driven YUMM1.1 and YUMM2.1 melanomas, and the carcinogen-induced murine colon adenocarcinoma MC38. The YUMM cell lines were established from mice with melanocyte-specific BRAFV600E mutation and PTEN loss (BRAFV600E/PTEN−/−). Anti–PD-1 or anti–PD-L1 therapy engendered strong antitumor activity against MC38 and YUMM2.1, but not YUMM1.1. PD-L1 expression did not differ between the three models at baseline or upon interferon stimulation. Whereas mutational load was high in MC38, it was lower in both YUMM models. In YUMM2.1, the antitumor activity of PD-1 blockade had a critical requirement for both CD4 and CD8 T cells, as well as CD28 and CD80/86 costimulation, with an increase in CD11c+CD11b+MHC-IIhigh dendritic cells and tumor-associated macrophages in the tumors after PD-1 blockade. Compared with YUMM1.1, YUMM2.1 exhibited a more inflammatory profile by RNA sequencing analysis, with an increase in expression of chemokine-trafficking genes that are related to immune cell recruitment and T-cell priming. In conclusion, response to PD-1 blockade therapy in tumor models requires CD4 and CD8 T cells and costimulation that is mediated by dendritic cells and macrophages. Cancer Immunol Res; 4(10); 845–57. ©2016 AACR.


Cancer Discovery | 2018

Genetic Mechanisms of Immune Evasion in Colorectal Cancer

Catherine S. Grasso; Marios Giannakis; Daniel K. Wells; Tsuyoshi Hamada; Xinmeng Jasmine Mu; Michael J. Quist; Jonathan A. Nowak; Reiko Nishihara; Zhi Rong Qian; Kentaro Inamura; Teppei Morikawa; Katsuhiko Nosho; Gabriel Abril-Rodriguez; Charles Connolly; Helena Escuin-Ordinas; Milan S. Geybels; William M. Grady; Li Hsu; Siwen Hu-Lieskovan; Jeroen R. Huyghe; Yeon Joo Kim; Paige Krystofinski; Mark D. M. Leiserson; Dennis Montoya; Brian B. Nadel; Matteo Pellegrini; Colin C. Pritchard; Cristina Puig-Saus; Elleanor H. Quist; Benjamin J. Raphael

To understand the genetic drivers of immune recognition and evasion in colorectal cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 classified as microsatellite instability-high (MSI-high). This set includes The Cancer Genome Atlas colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of colorectal cancer, had a high rate of significantly mutated genes in important immune-modulating pathways and in the antigen presentation machinery, including biallelic losses of B2M and HLA genes due to copy-number alterations and copy-neutral loss of heterozygosity. WNT/β-catenin signaling genes were significantly mutated in all colorectal cancer subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This large-scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that colorectal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion.Significance: This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it should be possible to better monitor resistance in the 15% of cases that respond to immune blockade therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that currently do not. Cancer Discov; 8(6); 730-49. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 663.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance

Yapeng Su; Wei Wei; Lidia Robert; Min Xue; Jennifer Tsoi; Angel Garcia-Diaz; Blanca Homet Moreno; Jungwoo Kim; Rachel Ng; Jihoon W. Lee; Richard C. Koya; Begonya Comin-Anduix; Thomas G. Graeber; Antoni Ribas; James R. Heath

Significance This work provides biophysical insights into how BRAF mutant melanoma cells adapt to the stress of MAPK inhibition via a series of reversible phenotypic transitions toward drug-tolerant or drug-resistant cell states enriched for neural-crest factors and mesenchymal signatures. This adaptation is influenced by cell phenotype-specific drug selection and cell state interconversion, but not selection of genetically resistant clones. A panel of functional proteins, analyzed at the single-cell level, pointed to signaling network hubs that drive the initiation of the melanoma cell adaptive transition. Targeting those hubs halted the transition and arrested resistance development. Continuous BRAF inhibition of BRAF mutant melanomas triggers a series of cell state changes that lead to therapy resistance and escape from immune control before establishing acquired resistance genetically. We used genome-wide transcriptomics and single-cell phenotyping to explore the response kinetics to BRAF inhibition for a panel of patient-derived BRAFV600-mutant melanoma cell lines. A subset of plastic cell lines, which followed a trajectory covering multiple known cell state transitions, provided models for more detailed biophysical investigations. Markov modeling revealed that the cell state transitions were reversible and mediated by both Lamarckian induction and nongenetic Darwinian selection of drug-tolerant states. Single-cell functional proteomics revealed activation of certain signaling networks shortly after BRAF inhibition, and before the appearance of drug-resistant phenotypes. Drug targeting those networks, in combination with BRAF inhibition, halted the adaptive transition and led to prolonged growth inhibition in multiple patient-derived cell lines.


Cancer Cell | 2018

Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress

Jennifer Tsoi; Lidia Robert; Kim Paraiso; Carlos Galvan; Katherine M. Sheu; Johnson Lay; Deborah J.L. Wong; Mohammad Atefi; Roksana Shirazi; Xiaoyan Wang; Daniel Braas; Catherine S. Grasso; Nicolaos Palaskas; Antoni Ribas; Thomas G. Graeber

Malignant transformation can result in melanoma cells that resemble different stages of their embryonic development. Our gene expression analysis of human melanoma cell lines and patient tumors revealed that melanoma follows a two-dimensional differentiation trajectory that can be subclassified into four progressive subtypes. This differentiation model is associated with subtype-specific sensitivity to iron-dependent oxidative stress and cell death known as ferroptosis. Receptor tyrosine kinase-mediated resistance to mitogen-activated protein kinase targeted therapies and activation of the inflammatory signaling associated with immune therapy involves transitions along this differentiation trajectory, which lead to increased sensitivity to ferroptosis. Therefore, ferroptosis-inducing drugs present an orthogonal therapeutic approach to target the differentiation plasticity of melanoma cells to increase the efficacy of targeted and immune therapies.


Scientific Reports | 2016

CRAF R391W is a melanoma driver oncogene

Mohammad Atefi; Bjoern Titz; Jennifer Tsoi; Earl Avramis; Allison Le; Charles Ng; Anastasia Lomova; Amanda Lassen; Michael C. Friedman; Bartosz Chmielowski; Antoni Ribas; Thomas G. Graeber

Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas.

Collaboration


Dive into the Jennifer Tsoi's collaboration.

Top Co-Authors

Avatar

Antoni Ribas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lidia Robert

University of California

View shared research outputs
Top Co-Authors

Avatar

Richard C. Koya

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Mok

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge