Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenny E. Gumperz is active.

Publication


Featured researches published by Jenny E. Gumperz.


Journal of Experimental Medicine | 2002

Functionally Distinct Subsets of CD1d-restricted Natural Killer T Cells Revealed by CD1d Tetramer Staining

Jenny E. Gumperz; Sachiko Miyake; Takashi Yamamura; Michael B. Brenner

CD1d-restricted natural killer (NK)T cells are known to potently secrete T helper (Th)1 and Th2 cytokines and to mediate cytolysis, but it is unclear how these contrasting functional activities are regulated. Using lipid antigen–loaded CD1d tetramers, we have distinguished two subsets of CD1d-restricted T cells in fresh peripheral blood that differ in cytokine production and cytotoxic activation. One subset, which was CD4−, selectively produced the Th1 cytokines interferon γ and tumor necrosis factor α, and expressed NKG2d, a marker associated with cytolysis of microbially infected and neoplastic cells. This subset up-regulated perforin after exposure to interleukin (IL)-2 or IL-12. In contrast, CD4+ CD1d-restricted NKT cells potently produced both Th1 and Th2 cytokines, up-regulated perforin in response to stimulation by phorbol myristate acetate and ionomycin but not IL-2 or IL-12, and could be induced to express CD95L. Further, for both CD1d-restricted NKT cell subsets, we found that antigenic stimulation induced cytokine production but not perforin expression, whereas exposure to inflammatory factors enhanced perforin expression but did not stimulate cytokine production. These results show that the various activities of CD1d-restricted T cells in tumor rejection, autoimmune disease, and microbial infections could result from activation of functionally distinct subsets, and that inflammatory and antigenic stimuli may influence different effector functions.


Nature Immunology | 2003

Mechanism of CD1d-restricted natural killer T cell activation during microbial infection.

Manfred Brigl; Lynn Bry; Sally C. Kent; Jenny E. Gumperz; Michael B. Brenner

CD1d-restricted natural killer T (NKT) cells are important for host defense against a variety of microbial pathogens. How and when these T cells become activated physiologically during infection remains unknown. Our data support a model in which NKT cells use a unique activation mechanism not requiring their recognition of microbial antigens. Instead, weak responses to CD1d-presented self antigens were amplified by interleukin 12 made by dendritic cells in response to microbial products, resulting in potent interferon-γ secretion. NKT cells were among the first lymphocytes to respond during Salmonella typhimurium infection, and their activation in vivo also depended on interleukin 12 and CD1d recognition. We propose this mechanism of activation as a major pathway responsible for the rapid activation of NKT cells in different microbial infections.


Immunity | 2000

Murine CD1d-Restricted T Cell Recognition of Cellular Lipids

Jenny E. Gumperz; Christopher L. Roy; Anna Makowska; Deirdre Lum; Masahiko Sugita; Theresa Podrebarac; Yasuhiko Koezuka; Steven A. Porcelli; Susanna Cardell; Michael B. Brenner; Samuel M. Behar

NKT cells are associated with immunological control of autoimmune disease and cancer and can recognize cell surface mCD1d without addition of exogenous antigens. Cellular antigens presented by mCD1d have not been identified, although NKT cells can recognize a synthetic glycolipid, alpha-GalCer. Here we show that after addition of a lipid extract from a tumor cell line, plate-bound mCD1d molecules stimulated an NKT cell hybridoma. This hybridoma also responded strongly to three purified phospholipids, but failed to recognize alpha-GalCer. Seven of sixteen other mCD1d restricted hybridomas also showed a response to certain purified phospholipids. These findings suggest NKT cells can recognize cellular antigens distinct from alpha-GalCer and identify phospholipids as potential self-antigens presented by mCD1d.


Nature | 2005

Apolipoprotein-mediated pathways of lipid antigen presentation

Peter van den Elzen; Salil Garg; Luis León; Manfred Brigl; Elizabeth A. Leadbetter; Jenny E. Gumperz; Chris C. Dascher; Tan-Yun Cheng; Frank M. Sacks; Petr A. Illarionov; Gurdyal S. Besra; Sally C. Kent; D. Branch Moody; Michael B. Brenner

Peptide antigens are presented to T cells by major histocompatibility complex (MHC) molecules, with endogenous peptides presented by MHC class I and exogenous peptides presented by MHC class II. In contrast to the MHC system, CD1 molecules bind lipid antigens that are presented at the antigen-presenting cell (APC) surface to lipid antigen-reactive T cells. Because CD1 molecules survey endocytic compartments, it is self-evident that they encounter antigens from extracellular sources. However, the mechanisms of exogenous lipid antigen delivery to CD1-antigen-loading compartments are not known. Serum apolipoproteins are mediators of extracellular lipid transport for metabolic needs. Here we define the pathways mediating markedly efficient exogenous lipid antigen delivery by apolipoproteins to achieve T-cell activation. Apolipoprotein E binds lipid antigens and delivers them by receptor-mediated uptake into endosomal compartments containing CD1 in APCs. Apolipoprotein E mediates the presentation of serum-borne lipid antigens and can be secreted by APCs as a mechanism to survey the local environment to capture antigens or to transfer microbial lipids from infected cells to bystander APCs. Thus, the immune system has co-opted a component of lipid metabolism to develop immunological responses to lipid antigens.


Nature Immunology | 2002

CD1-dependent dendritic cell instruction

Michael S. Vincent; David S. Leslie; Jenny E. Gumperz; Xiaowei Xiong; Ethan P. Grant; Michael B. Brenner

Both microbial products and T cell factors influence dendritic cell (DC) maturation. However, it is not known which T cells are capable of interacting with DCs at the initiation of adaptive immunity, when foreign antigen–specific T cells are rare. We show here that self-reactive CD1-restricted T cells can promote DC maturation by recognizing CD1 in the absence of foreign antigens. T cell recognition of all four CD1 isoforms can trigger DC maturation, but their distinct mechanisms of costimulation lead to profound differences in concomitant interleukin 12 p70 production. Distinct CD1-reactive T cells may thus differentially direct DC development early in the immune response, thereby controlling subsequent polarization of acquired immunity.


Journal of Immunology | 2003

CD1d-Restricted NKT Cells Express a Chemokine Receptor Profile Indicative of Th1-Type Inflammatory Homing Cells

Seddon Y. Thomas; Runhua Hou; Jonathan E. Boyson; Terry K. Means; Christoph Hess; Douglas P. Olson; Jack L. Strominger; Michael B. Brenner; Jenny E. Gumperz; S. Brian Wilson; Andrew D. Luster

CD1d-restricted T cells (NKT cells) are innate memory cells activated by lipid Ags and play important roles in the initiation and regulation of the immune response. However, little is known about the trafficking patterns of these cells or the tissue compartment in which they exert their regulatory activity. In this study, we determined the chemokine receptor profile expressed by CD1d-restricted T cells found in the peripheral blood of healthy volunteers as well as CD1d-restricted T cell clones. CD1d-restricted T cells were identified by Abs recognizing the invariant Vα24 TCR rearrangement or by binding to CD1d-Fc fusion tetramers loaded with α-GalCer. CD1d-restricted T cells in the peripheral blood and CD1d-restricted T cell clones expressed high levels of CXCR3, CCR5, and CCR6; intermediate levels of CXCR4 and CXCR6; and low levels of CXCR1, CCR1, CCR2, and CX3CR1, a receptor pattern often associated with tissue-infiltrating effector Th1 cells and CD8+ T cells. Very few of these cells expressed the lymphoid-homing receptors CCR7 or CXCR5. CCR4 was expressed predominantly on CD4+, but not on double-negative CD1d-restricted T cells, which may indicate differential trafficking patterns for these two functionally distinct subsets. CD1d-restricted T cell clones responded to chemokine ligands for CXCR1/2, CXCR3, CXCR4, CXCR6, CCR4, and CCR5 in calcium flux and/or chemotaxis assays. These data indicate that CD1d-restricted T cells express a chemokine receptor profile most similar to Th1 inflammatory homing cells and suggest that these cells perform their function in peripheral tissue sites rather than in secondary lymphoid organs.


Immunity | 1996

CD94 and a novel associated protein (94AP) form a NK cell receptor involved in the recognition of HLA-A, HLA-B, and HLA-C allotypes.

Joseph H. Phillips; Chiwen Chang; Jeanine D. Mattson; Jenny E. Gumperz; Peter Parham; Lewis L. Lanier

Whereas the human killer cell inhibitory receptors (KIRs) for HLA class I are immunoglobulin-like monomeric type I glycoproteins, the murine Ly49 receptors for H-2 are type II homodimers of the C-type lectin superfamily. Here, we demonstrate that human NK cells also express C-type lectin receptors that influence recognition of polymorphic HLA-A, HLA-B, and HLA-C molecules. These receptors are heterodimers composed of CD94 chains covalently associated with novel tyrosine-phosphorylated glycoproteins (94AP). Some NK clones recognize a common HLA-C ligand using both KIRs and CD94-94AP receptors. These findings suggest the existence of human inhibitory MHC class I receptors of the immunoglobulin and C-type lectin superfamilies and indicate overlap in ligand specificity.


PLOS Biology | 2009

Recognition of Lyso-Phospholipids by Human Natural Killer T Lymphocytes

Lisa Fox; Daryl Cox; Jennifer L. Lockridge; Xiaohua Wang; Xiuxu Chen; Louise Scharf; David L Trott; Rachel M. Ndonye; Natacha Veerapen; Gurdyal S. Besra; Amy R. Howell; Mark E. Cook; Erin J. Adams; William H. Hildebrand; Jenny E. Gumperz

By identifying the lipid LPC as an endogenous antigen, recognized by the invariant subset of human NKT cells, this study establishes a novel link between these immunoregulatory cells and an inflammatory lipid mediator.


Journal of Clinical Investigation | 2005

Regulation of CD1d expression and function by a herpesvirus infection

David Jesse Sanchez; Jenny E. Gumperz; Don Ganem

Little is known about the role of CD1d-restricted T cells in antiviral immune responses. Here we show that the lytic replication cycle of the Kaposi sarcoma-associated herpesvirus (KSHV) promotes downregulation of cell-surface CD1d. This is caused by expression of the 2 modulator of immune recognition (MIR) proteins of the virus, each of which promotes the loss of surface CD1d expression following transfection into uninfected cells. Inhibition of CD1d surface expression is due to ubiquitination of the CD1d alpha-chain on a unique lysine residue in its cytoplasmic tail, which triggers endocytosis. Unlike MIR-mediated MHC class I downregulation, however, CD1d downregulation does not appear to include accelerated lysosomal degradation. MIR2-induced downregulation of CD1d results in reduced activation of CD1d-restricted T cells in vitro. KSHV modulation of CD1d expression represents a strategy for viral evasion of innate host immune responses and implicates CD1d-restricted T cells as regulators of this viral infection.


Journal of Virology | 2011

A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas

Shi Dong Ma; Subramanya Hegde; Ken H. Young; Ruth Sullivan; Deepika Rajesh; Ying Zhou; Ewa Jankowska-Gan; William J. Burlingham; Xiaoping Sun; Margaret L. Gulley; Weihua Tang; Jenny E. Gumperz; Shannon C. Kenney

ABSTRACT Epstein-Barr virus (EBV) infects cells in latent or lytic forms, but the role of lytic infection in EBV-induced lymphomas is unclear. Here, we have used a new humanized mouse model, in which both human fetal CD34+ hematopoietic stem cells and thymus/liver tissue are transplanted, to compare EBV pathogenesis and lymphoma formation following infection with a lytic replication-defective BZLF1-deleted (Z-KO) virus or a lytically active BZLF1+ control. Both the control and Z-KO viruses established long-term viral latency in all infected animals. The infection appeared well controlled in some animals, but others eventually developed CD20+ diffuse large B cell lymphomas (DLBCL). Animals infected with the control virus developed tumors more frequently than Z-KO virus-infected animals. Specific immune responses against EBV-infected B cells were generated in mice infected with either the control virus or the Z-KO virus. In both cases, forms of viral latency (type I and type IIB) were observed that are less immunogenic than the highly transforming form (type III) commonly found in tumors of immunocompromised hosts, suggesting that immune pressure contributed to the outcome of the infection. These results point to an important role for lytic EBV infection in the development of B cell lymphomas in the context of an active host immune response.

Collaboration


Dive into the Jenny E. Gumperz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael B. Brenner

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaohua Wang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Subramanya Hegde

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Xiuxu Chen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lisa Fox

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shannon C. Kenney

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge