Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenny Forshed is active.

Publication


Featured researches published by Jenny Forshed.


Analytica Chimica Acta | 2003

Peak alignment of NMR signals by means of a genetic algorithm

Jenny Forshed; Sven P. Jacobsson

Nuclear magnetic resonance (NMR) analysis of complex samples, such as biofluid samples is accompanied by variations in peak position and peak shape not directly related to the sample. This is due to variations in the background matrix of the sample and to instrumental instabilities. These variations complicate and limit the interpretation and analysis of NMR data by multivariate methods. Alignment of the NMR signals may circumvent these limitations and is an important preprocessing step prior to multivariate analysis. Previous aligning methods reduce the spectral resolution, are very computer-intensive for this kind of data (65k data points in one spectrum), or rely on peak detection. The method presented in this work requires neither data reduction nor preprocessing, e.g. peak detection. The alignment is achieved by taking each segment of the spectrum individually, shifting it sidewise, and linearly interpolating it to stretch or shrink until the best correlation with a corresponding reference spectrum segment is obtained. The segments are automatically picked out with a routine, which avoids cutting in a peak, and the optimization process is accomplished by means of a genetic algorithm (GA). The peak alignment routine is applied to NMR metabonomic data.1


Nature Methods | 2014

HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics

Rui M. Branca; Lukas M. Orre; H. Johansson; Viktor Granholm; Mikael Huss; Åsa Pérez-Bercoff; Jenny Forshed; Lukas Käll; Janne Lehtiö

We present a liquid chromatography–mass spectrometry (LC-MS)-based method permitting unbiased (gene prediction–independent) genome-wide discovery of protein-coding loci in higher eukaryotes. Using high-resolution isoelectric focusing (HiRIEF) at the peptide level in the 3.7–5.0 pH range and accurate peptide isoelectric point (pI) prediction, we probed the six-reading-frame translation of the human and mouse genomes and identified 98 and 52 previously undiscovered protein-coding loci, respectively. The method also enabled deep proteome coverage, identifying 13,078 human and 10,637 mouse proteins.


Metabolomics | 2008

Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography-mass spectrometry and nuclear magnetic resonance

Sofia Moco; Jenny Forshed; Ric C. H. de Vos; Raoul J. Bino; Jacques Vervoort

Nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LCMS) are frequently used as technological platforms for metabolomics applications. In this study, the metabolic profiles of ripe fruits from 50 different tomato cultivars, including beef, cherry and round types, were recorded by both 1H NMR and accurate mass LC-quadrupole time-of-flight (QTOF) MS. Different analytical selectivities were found for these both profiling techniques. In fact, NMR and LCMS provided complementary data, as the metabolites detected belong to essentially different metabolic pathways. Yet, upon unsupervised multivariate analysis, both NMR and LCMS datasets revealed a clear segregation of, on the one hand, the cherry tomatoes and, on the other hand, the beef and round tomatoes. Intra-method (NMR–NMR, LCMS–LCMS) and inter-method (NMR–LCMS) correlation analyses were performed enabling the annotation of metabolites from highly correlating metabolite signals. Signals belonging to the same metabolite or to chemically related metabolites are among the highest correlations found. Inter-method correlation analysis produced highly informative and complementary information for the identification of metabolites, even in de case of low abundant NMR signals. The applied approach appears to be a promising strategy in extending the analytical capacities of these metabolomics techniques with regard to the discovery and identification of biomarkers and yet unknown metabolites.


Molecular & Cellular Proteomics | 2012

Tumor Proteomics by Multivariate Analysis on Individual Pathway Data for Characterization of Vulvar Cancer Phenotypes

AnnSofi Sandberg; Gunnel Lindell; Brita Nordström Källström; Rui M. Branca; Kristina Gemzell Danielsson; Mats Dahlberg; Barbro Larson; Jenny Forshed; Janne Lehtiö

Vulvar squamous cell carcinoma (VSCC) is the fourth most common gynecological cancer. Based on etiology VSCC is divided into two subtypes; one related to high-risk human papilloma virus (HPV) and one HPV negative. The two subtypes are proposed to develop via separate intracellular signaling pathways. We investigated a suggested link between HPV infection and relapse risk in VSCC through in-depth protein profiling of 14 VSCC tumor specimens. The tumor proteomes were analyzed by liquid-chromatography tandem mass spectrometry. Relative protein quantification was performed by 8-plex isobaric tags for relative and absolute quantification. Labeled peptides were fractionated by high-resolution isoelectric focusing prior to liquid-chromatography tandem mass spectrometry to reduce sample complexity. In total, 1579 proteins were regarded as accurately quantified and analyzed further. For classification of clinical groups, data analysis was performed by comparing protein level differences between tumors defined by HPV and/or relapse status. Further, we performed a biological analysis on individual tumor proteomes by matching data to known biological pathways. We here present a novel analysis approach that combines pathway alteration data on individual tumor level with multivariate statistics for HPV and relapse status comparisons. Four proteins (signal transducer and activator of transcription-1, myxovirus resistance protein 1, proteasome subunit alpha type-5 and legumain) identified as main classifiers of relapse status were validated by immunohistochemistry (IHC). Two of the proteins are interferon-regulated and on mRNA level known to be repressed by HPV. By both liquid-chromatography tandem mass spectrometry and immunohistochemistry data we could single out a subgroup of HPV negative/relapse-associated tumors. The pathway level data analysis confirmed three of the proteins, and further identified the ubiquitin-proteasome pathway as altered in the high risk subgroup. We show that pathway fingerprinting with resolution on individual tumor level adds biological information that strengthens a generalized protein analysis.


Journal of Pharmaceutical and Biomedical Analysis | 2002

NMR and Bayesian regularized neural network regression for impurity determination of 4-aminophenol

Jenny Forshed; Fredrik Andersson; Sven P. Jacobsson

A method for the determination of 4-aminophenol as an impurity in paracetamol (N-(4-hydroxyphenyl)-acetamide) by proton nuclear magnetic resonance ((1)H-NMR) spectroscopy has been developed. The (13)C-satellite from the protons in the ortho position from the hydroxyl group in paracetamol was used as an internal standard, although these peaks interfered with the peaks from the protons in 4-aminophenol. Because of interference in the spectra and non-linearity over a wide calibration range, a Bayesian regularized neural network model was used for calibration. Various kinds of data preprocessing were examined: zero filling, multiplication by a negative exponential function (line broadening), followed by Fourier transformation of the free induction decay (FID). The NMR spectral data were automatically phased and shift-adjusted by means of a genetic algorithm. Multiplicative scatter correction and data compression by wavelets and sequential zeroing of weights variable selection were performed to obtain an optimal calibration model. Neither zero filling of the FID nor line broadening improved the calibration models with regard to error of prediction, so these processes were excluded in the final model. The generated Bayesian regularized network model was evaluated with an independent test set. Four different models with different test sets were constructed to explore the quality of the calibration. The mean error of the optimal calibration model was 25.3 x 10(-6) weight of 4-aminophenol per weight paracetamol. The method is characterized by being relative fast, simple and sufficient sensitive for typical pharmaceutical impurity determinations.


Nature Communications | 2013

Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer

H. Johansson; Betzabe C. Sanchez; Filip Mundt; Jenny Forshed; Anikó Kovács; Elena Panizza; Lina Hultin-Rosenberg; Bo Lundgren; Ulf Martens; Gyöngyvér Máthé; Zohar Yakhini; Khalil Helou; Kamilla Krawiec; Lena Kanter; Anders Hjerpe; Olle Stål; Barbro Linderholm; Janne Lehtiö

About one-third of oestrogen receptor alpha-positive breast cancer patients treated with tamoxifen relapse. Here we identify the nuclear receptor retinoic acid receptor alpha as a marker of tamoxifen resistance. Using quantitative mass spectrometry-based proteomics, we show that retinoic acid receptor alpha protein networks and levels differ in a tamoxifen-sensitive (MCF7) and a tamoxifen-resistant (LCC2) cell line. High intratumoural retinoic acid receptor alpha protein levels also correlate with reduced relapse-free survival in oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen solely. A similar retinoic acid receptor alpha expression pattern is seen in a comparable independent patient cohort. An oestrogen receptor alpha and retinoic acid receptor alpha ligand screening reveals that tamoxifen-resistant LCC2 cells have increased sensitivity to retinoic acid receptor alpha ligands and are less sensitive to oestrogen receptor alpha ligands compared with MCF7 cells. Our data indicate that retinoic acid receptor alpha may be a novel therapeutic target and a predictive factor for oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen.


Journal of Proteomics | 2014

Quantitative accuracy in mass spectrometry based proteomics of complex samples: the impact of labeling and precursor interference.

AnnSofi Sandberg; Rui M. Branca; Janne Lehtiö; Jenny Forshed

UNLABELLED Knowing the limit of quantification is important to accurately judge the results from proteomics studies. In order to investigate isobaric labels in combination with peptide pre-fractionation by high resolution isoelectric focusing in terms of limit of detection, quantitative accuracy and how to improve it, we used a human cell lysate spiked with 57 protein standards providing reference points across a wide concentration range. Specifically, the impact of precursor mixing (isolation interference and reporter ion interference) on quantitative accuracy was investigated by co-analyzing iTRAQ (8-plex) and TMT (6-plex) labeled peptides. A label-free analysis was also performed. Peptides, labeled or label-free, were analyzed by LC-MS/MS (Orbitrap Velos). We identified 3386 proteins by the label-free approach, 4466 with iTRAQ and 5961 with TMT. A linear range of quantification down to 1fmol was indicated for both isobaric and label-free analysis workflows, with an upper limit exceeding 60fmol. Our results indicate that 6-plex TMT is more sensitive than 8-plex iTRAQ. For isobaric labels, quantitative accuracy was affected by precursor mixing. Based on our evaluation on precursor mixing and accuracy of isobaric label quantification, we propose a cut off of <30% isolation interference for peptide spectrum matches (PSMs) used in the quantification. BIOLOGICAL SIGNIFICANCE Quantitative proteome analysis by mass spectrometry offers opportunities for biological research. However, knowing the limit of quantification in biological samples is important to accurately judge the results. By using a high-complexity sample spiked with protein standards of known concentrations, we investigated the quantification limits of label-free and label-based peptide quantification, including an evaluation of precursor mixing and its impact on quantification accuracy by isobaric labels. We suggest limits of allowed precursor interference and believe that this study contributes with information useful in proteome quantification by mass spectrometry.


Molecular & Cellular Proteomics | 2014

Proteome Screening of Pleural Effusions Identifies Galectin 1 as a Diagnostic Biomarker and Highlights Several Prognostic Biomarkers for Malignant Mesothelioma

Filip Mundt; H. Johansson; Jenny Forshed; Sertaç Arslan; Muzaffer Metintas; Katalin Dobra; Janne Lehtiö; Anders Hjerpe

Malignant mesothelioma is an aggressive asbestos-induced cancer, and affected patients have a median survival of approximately one year after diagnosis. It is often difficult to reach a conclusive diagnosis, and ancillary measurements of soluble biomarkers could increase diagnostic accuracy. Unfortunately, few soluble mesothelioma biomarkers are suitable for clinical application. Here we screened the effusion proteomes of mesothelioma and lung adenocarcinoma patients to identify novel soluble mesothelioma biomarkers. We performed quantitative mass-spectrometry-based proteomics using isobaric tags for quantification and used narrow-range immobilized pH gradient/high-resolution isoelectric focusing (pH 4–4.25) prior to analysis by means of nano liquid chromatography coupled to MS/MS. More than 1,300 proteins were identified in pleural effusions from patients with malignant mesothelioma (n = 6), lung adenocarcinoma (n = 6), or benign mesotheliosis (n = 7). Data are available via ProteomeXchange with identifier PXD000531. The identified proteins included a set of known mesothelioma markers and proteins that regulate hallmarks of cancer such as invasion, angiogenesis, and immune evasion, plus several new candidate proteins. Seven candidates (aldo-keto reductase 1B10, apolipoprotein C-I, galectin 1, myosin-VIIb, superoxide dismutase 2, tenascin C, and thrombospondin 1) were validated by enzyme-linked immunosorbent assays in a larger group of patients with mesothelioma (n = 37) or metastatic carcinomas (n = 25) and in effusions from patients with benign, reactive conditions (n = 16). Galectin 1 was identified as overexpressed in effusions from lung adenocarcinoma relative to mesothelioma and was validated as an excellent predictor for metastatic carcinomas against malignant mesothelioma. Galectin 1, aldo-keto reductase 1B10, and apolipoprotein C-I were all identified as potential prognostic biomarkers for malignant mesothelioma. This analysis of the effusion proteome furthers our understanding of malignant mesothelioma, identified galectin 1 as a potential diagnostic biomarker, and highlighted several possible prognostic biomarkers of this disease.


Journal of Proteome Research | 2013

Quantitative Proteomics Profiling of Primary Lung Adenocarcinoma Tumors Reveals Functional Perturbations in Tumor Metabolism

Maria Pernemalm; Luigi De Petris; Rui M. Branca; Jenny Forshed; Lena Kanter; Jean-Charles Soria; Philippe Girard; Pierre Validire; Yudi Pawitan; Joost van den Oord; Vladimir Lazar; Sven Påhlman; Rolf Lewensohn; Janne Lehtiö

In this study, we have analyzed human primary lung adenocarcinoma tumors using global mass spectrometry to elucidate the biological mechanisms behind relapse post surgery. In total, we identified over 3000 proteins with high confidence. Supervised multivariate analysis was used to select 132 proteins separating the prognostic groups. Based on in-depth bioinformatics analysis, we hypothesized that the tumors with poor prognosis had a higher glycolytic activity and HIF activation. By measuring the bioenergetic cellular index of the tumors, we could detect a higher dependency of glycolysis among the tumors with poor prognosis. Further, we could also detect an up-regulation of HIF1α mRNA expression in tumors with early relapse. Finally, we selected three proteins that were upregulated in the poor prognosis group (cathepsin D, ENO1, and VDAC1) to confirm that the proteins indeed originated from the tumor and not from a stromal or inflammatory component. Overall, these findings show how in-depth analysis of clinical material can lead to an increased understanding of the molecular mechanisms behind tumor progression.


Molecular & Cellular Proteomics | 2013

Defining, comparing and improving iTRAQ quantification in mass spectrometry proteomics data

Lina Hultin-Rosenberg; Jenny Forshed; Rui M. Branca; Janne Lehtiö; H. Johansson

The purpose of this study was to generate a basis for the decision of what protein quantities are reliable and find a way for accurate and precise protein quantification. To investigate this we have used thousands of peptide measurements to estimate variance and bias for quantification by iTRAQ (isobaric tags for relative and absolute quantification) mass spectrometry in complex human samples. A549 cell lysate was mixed in the proportions 2:2:1:1:2:2:1:1, fractionated by high resolution isoelectric focusing and liquid chromatography and analyzed by three mass spectrometry platforms; LTQ Orbitrap Velos, 4800 MALDI-TOF/TOF and 6530 Q-TOF. We have investigated how variance and bias in the iTRAQ reporter ions data are affected by common experimental variables such as sample amount, sample fractionation, fragmentation energy, and instrument platform. Based on this, we have suggested a concept for experimental design and a methodology for protein quantification. By using duplicate samples in each run, each experiment is validated based on its internal experimental variation. The duplicates are used for calculating peptide weights, unique to the experiment, which is used in the protein quantification. By weighting the peptides depending on reporter ion intensity, we can decrease the relative error in quantification at the protein level and assign a total weight to each protein that reflects the protein quantitation confidence. We also demonstrate the usability of this methodology in a cancer cell line experiment as well as in a clinical data set of lung cancer tissue samples. In conclusion, we have in this study developed a methodology for improved protein quantification in shotgun proteomics and introduced a way to assess quantification for proteins with few peptides. The experimental design and developed algorithms decreased the relative protein quantification error in the analysis of complex biological samples.

Collaboration


Dive into the Jenny Forshed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helena Idborg

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge