Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenny G. Vitillo is active.

Publication


Featured researches published by Jenny G. Vitillo.


Journal of the American Chemical Society | 2008

Role of Exposed Metal Sites in Hydrogen Storage in MOFs

Jenny G. Vitillo; Laura Regli; Sachin Chavan; Gabriele Ricchiardi; Giuseppe Spoto; Pascal D. C. Dietzel; Silvia Bordiga; Adriano Zecchina

The role of exposed metal sites in increasing the H2 storage performances in metal-organic frameworks (MOFs) has been investigated by means of IR spectrometry. Three MOFs have been considered: MOF-5, with unexposed metal sites, and HKUST-1 and CPO-27-Ni, with exposed Cu(2+) and Ni(2+), respectively. The onset temperature of spectroscopic features associated with adsorbed H2 correlates with the adsorption enthalpy obtained by the VTIR method and with the shift experienced by the H-H stretching frequency. This relationship can be ascribed to the different nature and accessibility of the metal sites. On the basis of a pure energetic evaluation, it was observed that the best performance was shown by CPO-27-Ni that exhibits also an initial adsorption enthalpy of -13.5 kJ mol(-1), the highest yet observed for a MOF. Unfortunately, upon comparison of the hydrogen amounts stored at high pressure, the hydrogen capacities in these conditions are mostly dependent on the surface area and total pore volume of the material. This means that if control of MOF surface area can benefit the total stored amounts, only the presence of a great number of strong adsorption sites can make the (P, T) storage conditions more economically favorable. These observations lead to the prediction that efficient H2 storage by physisorption can be obtained by increasing the surface density of strong adsorption sites.


Physical Chemistry Chemical Physics | 2005

Hydrogen storage in Chabazite zeolite frameworks

Laura Regli; Adriano Zecchina; Jenny G. Vitillo; Donato Cocina; Giuseppe Spoto; Carlo Lamberti; Karl Petter Lillerud; Unni Olsbye; Silvia Bordiga

We have recently highlighted that H-SSZ-13, a highly siliceous zeolite (Si/Al = 11.6) with a chabazitic framework, is the most efficient zeolitic material for hydrogen storage [A. Zecchina, S. Bordiga, J. G. Vitillo, G. Ricchiardi, C. Lamberti, G. Spoto, M. Bjørgen and K. P. Lillerud, J. Am. Chem. Soc., 2005, 127, 6361]. The aim of this new study is thus to clarify both the role played by the acidic strength and by the density of the polarizing centers hosted in the same framework topology in the increase of the adsorptive capabilities of the chabazitic materials towards H2. To achieve this goal, the volumetric experiments of H2 uptake (performed at 77 K) and the transmission IR experiment of H2 adsorption at 15 K have been performed on H-SSZ-13, H-SAPO-34 (the isostructural silico-aluminophosphate material with the same Brønsted site density) and H-CHA (the standard chabazite zeolite: Si/Al = 2.1) materials. We have found that a H2 uptake improvement has been obtained by increasing the acidic strength of the Brønsted sites (moving from H-SAPO-34 to H-SSZ-13). Conversely, the important increase of the Brønsted sites density (moving from H-SSZ-13 to H-CHA) has played a negative role. This unexpected behavior has been explained as follows. The additional Brønsted sites are in mutual interaction via H-bonds inside the small cages of the chabazitic framework and for most of them the energetic cost needed to displace the adjacent OH ligand is higher than the adsorption enthalpy of the OH...H2 adduct. From our work it can be concluded that proton exchanged chabazitic frameworks represent, among zeolites, the most efficient materials for hydrogen storage. We have shown that a proper balance between available space (volume accessible to hydrogen), high contact surface, and specific interaction with strong and isolated polarizing centers are the necessary characteristics requested to design better materials for molecular H2 storage.


Physical Chemistry Chemical Physics | 2005

Theoretical maximal storage of hydrogen in zeolitic frameworks

Jenny G. Vitillo; Gabriele Ricchiardi; Giuseppe Spoto; Adriano Zecchina

Physisorption and encapsulation of molecular hydrogen in tailored microporous materials are two of the options for hydrogen storage. Among these materials, zeolites have been widely investigated. In these materials, the attained storage capacities vary widely with structure and composition, leading to the expectation that materials with improved binding sites, together with lighter frameworks, may represent efficient storage materials. In this work, we address the problem of the determination of the maximum amount of molecular hydrogen which could, in principle, be stored in a given zeolitic framework, as limited by the size, structure and flexibility of its pore system. To this end, the progressive filling with H2 of 12 purely siliceous models of common zeolite frameworks has been simulated by means of classical molecular mechanics. By monitoring the variation of cell parameters upon progressive filling of the pores, conclusions are drawn regarding the maximum storage capacity of each framework and, more generally, on framework flexibility. The flexible non-pentasils RHO, FAU, KFI, LTA and CHA display the highest maximal capacities, ranging between 2.86-2.65 mass%, well below the targets set for automotive applications but still in an interesting range. The predicted maximal storage capacities correlate well with experimental results obtained at low temperature. The technique is easily extendable to any other microporous structure, and it can provide a method for the screening of hypothetical new materials for hydrogen storage applications.


Physical Chemistry Chemical Physics | 2009

Response of CPO-27-Ni towards CO, N2 and C2H4

Sachin Chavan; Francesca Bonino; Jenny G. Vitillo; Elena Groppo; Carlo Lamberti; Pascal D. C. Dietzel; Adriano Zecchina; Silvia Bordiga

Coordinatively unsaturated Ni(2+) atoms in CPO-27-Ni form linear adducts with molecular nitrogen. The framework responds to the adsorption-modifying vibrational properties and local structure around adsorbing sites. The present paper deals with a fundamental infrared (IR) study of the interaction of gases on a microporous adsorbent metallorganic framework CPO-27-Ni containing, after solvent removal, coordinatively unsaturated Ni(2+) atoms [Dietzel et al., Chem. Commun. 2006, 959]. CO, N(2) and C(2)H(4) have been chosen. Notwithstanding the relative medium (CO and C(2)H(4)) and weak (N(2)) adsorption enthalpies and the low equilibrium pressures adopted (100-10(-3) mbar) the CPO-27-Ni framework responds promptly and reversibly to the adsorption process, modifying significantly both vibrational properties and local structure around Ni(2+) adsorbing sites as determined by a parallel EXAFS investigation locating the N(2) molecule 2.27 +/- 0.03 A apart from Ni(2+). For both N(2) and C(2)H(4), IR spectra have been discussed and carefully compared with literature data. Isosteric heat of adsorption of the Ni(2+)...N(2) complex formation has been evaluated from temperature dependent IR study to be -DeltaH(ads) = 17 kJ mol(-1).


Chemsuschem | 2011

Tailoring Metal–Organic Frameworks for CO2 Capture: The Amino Effect

Jenny G. Vitillo; Marie Savonnet; Gabriele Ricchiardi; Silvia Bordiga

Carbon dioxide capture from processes is one of the strategies adopted to decrease anthropogenic greenhouse gas emissions. To lower the cost associated with the regeneration of amine-based scrubber systems, one of the envisaged strategies is the grafting of amines onto high-surface-area supports and, in particular, onto metal-organic frameworks (MOFs). In this study, the interaction between CO(2) and aliphatic and aromatic amines has been characterized by quantum mechanical methods (MP2), focusing attention both on species already reported in MOFs and on new amine-based linkers, to inspire the rational synthesis of new high-capacity MOFs. The calculations highlight binding-site requisites and indicate that CO(2) vibrations are independent of the adsorption energy and monitoring them in probe-molecule experiments is not a suitable marker of efficient adsorption.


Journal of Chemical Physics | 2005

Theoretical characterization of dihydrogen adducts with halide anions

Jenny G. Vitillo; Alessandro Damin; Adriano Zecchina; Gabriele Ricchiardi

The interaction between a hydrogen molecule and the halide anions F(-), Cl(-), Br(-), and I(-) has been studied at different levels of theory and with different basis sets. The most stable configurations of the complexes have a linear geometry, while the t-shaped complexes are saddle points on the potential energy surface, opposite to what is observed for alkali cations. An electrostatic analysis conducted on the resulting adducts has highlighted the predominance of the electrostatic term in the complexation energy and, in particular, of the quadrupole- and dipole-polarizability dependent contributions. Another striking difference with respect to the positive ions, is the fact that although the binding energies have similar values (ranging between 25 and 3 kJ /mol for F(-) and I(-), respectively), the vibrational shift of the nu(H-H) and in general the perturbation of the hydrogen molecule in complexes are much greater in the complexes with anions (Delta nu(H-H) ranges between -720 and -65 cm(-1)). Another difference with respect to the interaction with cations is a larger charge transfer from the anion to the hydrogen molecule. The Delta nu is the result of the cooperative role of the electrostatics and of the charge transfer in the interaction. The correlation between binding energies and vibrational shift is far from linear, contrary to what is observed for cation complexes, in accordance with the higher polarizability and dynamic polarizability of the molecule along the molecular axis. The observed correlation may be valuable in the interpretation of spectra and thermodynamic properties of adsorbed H(2) in storage materials.


Physical Chemistry Chemical Physics | 2010

FTIR spectroscopy and thermodynamics of CO and H2 adsorbed on γ-, δ- and α-Al2O3

Evgeniy N. Gribov; Olena Zavorotynska; Giovanni Agostini; Jenny G. Vitillo; Gabriele Ricchiardi; Giuseppe Spoto; Adriano Zecchina

The adsorption of CO and H(2) at the surface of transitional (gamma and delta) and corundum (alpha) phases of Al(2)O(3) is studied by means of FTIR spectroscopy at temperature variable in the 293-60 K (CO) and 293-20 K (H(2)) intervals with the aims of better clarifying the nature of the surface Lewis centres and evaluate the thermodynamics of the adsorption process.


ACS Applied Materials & Interfaces | 2011

Aerogels and Polymorphism of isotactic poly(4-methyl-pentene-1)

Christophe Daniel; Jenny G. Vitillo; Gianluca Fasano; Gaetano Guerra

Monolithic and highly crystalline aerogels of isotactic poly(4-methyl-pentene-1) (i-P4MP1) have been prepared by sudden solvent extraction with supercritical carbon dioxide from thermoreversible gels. The cross-link junctions of i-P4MP1 gels, depending on the solvent, can be constituted by pure polymer crystalline phases (I or III or IV) or by polymer-solvent cocrystalline phases (for cyclohexane and carbon tetrachloride gels). Gels with cocrystalline phases lead to aerogels exhibiting the denser crystalline form II, whereas all the other considered gels lead to aerogels exhibiting the thermodynamically stable form I. Aerogels obtained from form I gels, which do not undergo a crystalline phase transition during the CO(2) extraction process present the high structural stability most suitable for the preparation of porous membranes. The effect of solvents on the aerogel pore structure and morphology has been also investigated by scanning electron microscopy and N(2) sorption measurements. In all cases, the aerogels present highly porous interconnected structures with macropores and mesopores presenting a large size distribution and a vanishing presence of micropores.


RSC Advances | 2015

Magnesium-based systems for carbon dioxide capture, storage and recycling: from leaves to synthetic nanostructured materials

Jenny G. Vitillo

A steep rise of carbon dioxide level in the atmosphere is one of the main causes of global warming. This increase is ascribed to the fact that, since the beginning of the industrial revolution, natural processes for CO2 sequestration are no longer able to cope with the excess of CO2 produced by anthropogenic activities. In recent years, research has been focused on defining artificial CO2 cycles to support the natural one. The element magnesium is used in this review as leitmotif to explore the majority of systems involved in each step of the natural and artificial CO2 cycles (separation, storage, sequestration or recycling). Magnesium is in fact ubiquitous, being present in the mesosphere as global layers, on the Earths surface in the most important enzyme for carbon fixation (Rubisco) and in silicates that constitute the major part of rocks, where CO2 is sequestered through natural weathering. For what concerns synthetic materials, zeolites, metal-supported particles and metal–organic frameworks are only a few of the systems considered in the literature. The intent of this review is to connect different fields of study to create an interdisciplinary review in the chemistry domain. Research outlooks are suggested for the different fields. In the end, a qualitative analysis of the advantages and limits of different processes and a rough estimate of their potential are given in terms of the time needed to reduce the atmospheric CO2 level. Although economical, political and health evaluations would be also necessary, this analysis indicates that forestation could be a possible winning solution in the short-middle term for lowering the atmospheric CO2 concentration.


Chemsuschem | 2014

Carbon Dioxide Adsorption in Amine-Functionalized Mixed-Ligand Metal-Organic Frameworks of UiO-66 Topology

Jayashree Ethiraj; Elisa Albanese; Bartolomeo Civalleri; Jenny G. Vitillo; Francesca Bonino; Sachin Chavan; Greig C. Shearer; Karl Petter Lillerud; Silvia Bordiga

A series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study. All experimental results are supported by values obtained through quantum mechanical calculations.

Collaboration


Dive into the Jenny G. Vitillo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lara Gigli

Elettra Sincrotrone Trieste

View shared research outputs
Researchain Logo
Decentralizing Knowledge