Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenny Hendriks is active.

Publication


Featured researches published by Jenny Hendriks.


Journal of Virology | 2011

Recombinant Adenovirus Serotype 26 (Ad26) and Ad35 Vaccine Vectors Bypass Immunity to Ad5 and Protect Nonhuman Primates against Ebolavirus Challenge

Thomas W. Geisbert; Michael Bailey; Lisa E. Hensley; Clement Asiedu; Joan B. Geisbert; Daphne Stanley; Anna N. Honko; Joshua C. Johnson; Sabue Mulangu; Maria Grazia Pau; Jerome Custers; Jort Vellinga; Jenny Hendriks; Peter B. Jahrling; Mario Roederer; Jaap Goudsmit; Richard A. Koup; Nancy J. Sullivan

ABSTRACT The use of adenoviruses (Ad) as vaccine vectors against a variety of pathogens has demonstrated their capacity to elicit strong antibody and cell-mediated immune responses. Adenovirus serotype C vectors, such as Ad serotype 5 (Ad5), expressing Ebolavirus (EBOV) glycoprotein (GP), protect completely after a single inoculation at a dose of 1010 viral particles. However, the clinical application of a vaccine based on Ad5 vectors may be hampered, since impairment of Ad5 vaccine efficacy has been demonstrated for humans and nonhuman primates with high levels of preexisting immunity to the vector. Ad26 and Ad35 segregate genetically from Ad5 and exhibit lower seroprevalence in humans, making them attractive vaccine vector alternatives. In the series of studies presented, we show that Ad26 and Ad35 vectors generate robust antigen-specific cell-mediated and humoral immune responses against EBOV GP and that Ad5 immune status does not affect the generation of GP-specific immune responses by these vaccines. We demonstrate partial protection against EBOV by a single-shot Ad26 vaccine and complete protection when this vaccine is boosted by Ad35 1 month later. Increases in efficacy are paralleled by substantial increases in T- and B-cell responses to EBOV GP. These results suggest that Ad26 and Ad35 vectors warrant further development as candidate vaccines for EBOV.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Systems analysis of protective immune responses to RTS,S malaria vaccination in humans

Dmitri Kazmin; Helder I. Nakaya; Eva K. Lee; Matthew J. Johnson; Robbert G. van der Most; Robert A. van den Berg; W. Ripley Ballou; Erik Jongert; Ulrike Wille-Reece; Christian Ockenhouse; Alan Aderem; Jerald C. Sadoff; Jenny Hendriks; Jens Wrammert; Rafi Ahmed; Bali Pulendran

Significance The RTS,S malaria vaccine is the most advanced malaria vaccine candidate to be tested in humans. Despite its promise, there is little understanding of its mechanism of action. In this work, we describe the use of a systems biological approach to identify “molecular signatures” that are induced rapidly after the standard RTS,S vaccination regimen, consisting of three RTS,S immunizations, or with a different regimen consisting of a primary immunization with recombinant adenovirus 35 (Ad35) expressing the circumsporozoite malaria antigen followed by two immunizations with RTS,S. These results reveal important insights about the innate and adaptive responses to vaccination and identify signatures of protective immunity against malaria. RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.


PLOS ONE | 2015

Ad35.CS.01-RTS,S/AS01 Heterologous Prime Boost Vaccine Efficacy against Sporozoite Challenge in Healthy Malaria-Naïve Adults.

Christian F. Ockenhouse; Jason Regules; Donna Tosh; Jessica Cowden; April K. Kathcart; James F. Cummings; Kristopher M. Paolino; James E. Moon; Jack Komisar; Edwin Kamau; Thomas K Oliver; Austin Chhoeu; Jitta Murphy; Kirsten E. Lyke; Matthew B. Laurens; Ashley Birkett; Cynthia R Lee; Rich Weltzin; Ulrike Wille-Reece; Martha Sedegah; Jenny Hendriks; Isabella Versteege; Maria Grazia Pau; Jerold Sadoff; Yannick Vanloubbeeck; Marc Lievens; Dirk Heerwegh; Philippe Moris; Yolanda Guerra Mendoza; Erik Jongert

Methods In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection. Results ARR and RRR vaccine regimens were well tolerated. Efficacy of ARR and RRR groups after controlled human malaria infection was 44% (95% confidence interval 21%-60%) and 52% (25%-70%), respectively. The RRR-group had greater anti-CS specific IgG titers than did the ARR-group. There were higher numbers of CS-specific CD4 T-cells expressing > 2 cytokine/activation markers and more ex vivo IFN-γ enzyme-linked immunospots in the ARR-group than the RRR-group. Protected subjects had higher CS-specific IgG titers than non-protected subjects (geometric mean titer, 120.8 vs 51.8 EU/ml, respectively; P = .001). Conclusions An increase in vaccine efficacy of ARR-group over RRR-group was not achieved. Future strategies to improve upon RTS,S-induced protection may need to utilize alternative highly immunogenic prime-boost regimens and/or additional target antigens. Trial Registration ClinicalTrials.gov NCT01366534


PLOS ONE | 2013

A Phase 1b Randomized, Controlled, Double-Blinded Dosage-Escalation Trial to Evaluate the Safety, Reactogenicity and Immunogenicity of an Adenovirus Type 35 Based Circumsporozoite Malaria Vaccine in Burkinabe Healthy Adults 18 to 45 Years of Age

Alphonse Ouédraogo; Alfred B. Tiono; Désiré Kargougou; Jean Baptiste Yaro; Espérance Ouédraogo; Youssouf Kaboré; David Tiga Kangoye; Edith C. Bougouma; Adama Gansané; Noelie Henri; Amidou Diarra; Souleymane Sanon; Issiaka Soulama; Amadou T. Konate; Nora L. Watson; Valerie Brown; Jenny Hendriks; Maria Grazia Pau; Isabella Versteege; Edison Wiesken; Jerald C. Sadoff; Issa Nebie; Sodiomon B. Sirima

Background Ad35.CS.01 is a pre-erythrocytic malaria candidate vaccine. It is a codon optimized nucleotide sequence representing the P. falciparum circumsporozoite (CS) surface antigen inserted in a replication deficient Adenovirus 35 backbone. A Phase 1a trial has been conducted in the USA in naïve adults and showed that the vaccine was safe. The aim of this study is to assess the safety and immunogenicity of ascending dosages in sub Saharan Africa. Methods A double blind, randomized, controlled, dose escalation, phase Ib trial was conducted in a rural area of Balonghin, the Saponé health district (Burkina Faso). Forty-eight healthy adults aged 18-45 years were randomized into 4 cohorts of 12 to receive three vaccine doses (day 0, 28 and 84) of 109, 1010, 5X1010, 1011 vp of Ad35.CS.01 or normal saline by intra muscular injection. Subjects were monitored carefully during the 14 days following each vaccination for non serious adverse events. Severe and serious adverse events were collected throughout the participant study duration (12 months from the first vaccination). Humoral and cellular immune responses were measured on study days 0, 28, 56, 84, 112 and 140. Results Of the forty-eight subjects enrolled, forty-four (91.7%) received all three scheduled vaccine doses. Local reactions, all of mild severity, occurred in thirteen (27.1%) subjects. Severe (grade 3) laboratory abnormalities occurred in five (10.4%) subjects. One serious adverse event was reported and attributed to infection judged unrelated to vaccine. The vaccine induced both antibody titers and CD8 T cells producing IFNγ and TNFα with specificity to CS while eliciting modest neutralizing antibody responses against Ad35. Conclusion Study vaccine Ad35.CS.01 at four different dose levels was well-tolerated and modestly immunogenic in this population. These results suggest that Ad35.CS.01 should be further investigated for preliminary efficacy in human challenge models and as part of heterologous prime-boost vaccination strategies. Trial Registration ClinicalTrials.gov NCT01018459 http://clinicaltrials.gov/ct2/show/NCT01018459


Vaccine | 2014

The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses

Benjamin M. Kagina; Michele Tameris; Hennie Geldenhuys; Mark Hatherill; Brian Abel; Gregory D. Hussey; Thomas J. Scriba; Hassan Mahomed; Jerald C. Sadoff; Willem A. Hanekom; Nazma Mansoor; Jane Hughes; Marwou de Kock; Wendy Whatney; Hadn Africa; Colleen Krohn; Ashley Veldsman; Angelique Luabeya Kany Kany; Macaya Douoguih; Maria Grazia Pau; Jenny Hendriks; Bruce McClain; Jacqueline G. Benko; Margaret Ann Snowden; David A. Hokey

BACKGROUND Efforts to reduce risk of tuberculosis disease in children include development of effective vaccines. Our aim was to test safety and immunogenicity of the new adenovirus 35-vectored tuberculosis vaccine candidate AERAS-402 in infants, administered as a boost following a prime with the Bacille Calmette-Guerin vaccine. METHODS In a phase 1 randomised, double-blind, placebo-controlled, dose-escalation trial, BCG-vaccinated infants aged 6-9 months were sequentially assigned to four study groups, then randomized to receive an increasing dose-strength of AERAS-402, or placebo. The highest dose group received a second dose of vaccine or placebo 56 days after the first. The primary study outcome was safety. Whole blood intracellular cytokine staining assessed immunogenicity. RESULTS Forty-two infants received AERAS-402 and 15 infants received placebo. During follow-up of 182 days, an acceptable safety profile was shown with no serious adverse events or discontinuations related to the vaccine. AERAS-402 induced a specific T cell response. A single dose of AERAS-402 induced CD4T cells predominantly expressing single IFN-γ whereas two doses induced CD4T cells predominantly expressing IFN-γ, TNF-α and IL-2 together. CD8T cells were induced and were more likely to be present after 2 doses of AERAS-402. CONCLUSIONS AERAS-402 was safe and immunogenic in healthy infants previously vaccinated with BCG at birth. Administration of the highest dose twice may be the most optimal vaccination strategy, based on the induced immunity. Multiple differences in T cell responses when infants are compared with adults vaccinated with AERAS-402, in the same setting and using the same whole blood intracellular cytokine assay, suggest specific strategies may be important for vaccination for each population.


Vaccine | 2015

A double-blind, randomised, placebo-controlled, dose-finding trial of the novel tuberculosis vaccine AERAS-402, an adenovirus-vectored fusion protein, in healthy, BCG-vaccinated infants

Michele Tameris; David A. Hokey; V. Nduba; Jahit Sacarlal; F. Laher; G. Kiringa; K. Gondo; E.M. Lazarus; Glenda Gray; Sharon Nachman; Hassan Mahomed; Katrina Downing; Brian Abel; Thomas J. Scriba; J.B. McClain; Maria Pau; Jenny Hendriks; Veerabadran Dheenadhayalan; S. Ishmukhamedov; Angelique Kany Kany Luabeya; Hennie Geldenhuys; Barbara Shepherd; G. Blatner; V. Cardenas; R. Walker; Willem A. Hanekom; Jerry Sadoff; Macaya Douoguih; L. Barker; Mark Hatherill

BACKGROUND Several novel tuberculosis vaccines are currently in clinical trials, including AERAS-402, an adenovector encoding a fusion protein of Mycobacterium tuberculosis antigens 85A, 85B, and TB10.4. A multicentred trial of AERAS-402 safety and immunogenicity in healthy infants was conducted in three countries in sub-Saharan Africa, using an adaptive design. METHODS In a double-blind, randomised, placebo-controlled, dose-finding trial, we enrolled BCG-vaccinated, HIV-uninfected infants aged 16-26 weeks. Infants in the safety/dose-finding phase received two doses of AERAS-402 across three dose levels, or placebo, intramuscularly on days 0 and 28. Infants in the expanded safety phase received three doses of the highest dose level, with the 3rd dose at day 280. Follow up for safety and immunogenicity was for up to two years. RESULTS We enrolled 206 infants (52 placebo and 154 AERAS-402 recipients) into the dose-finding phase and 281 (141 placebo and 140 AERAS-402 recipients) into the expanded safety phase. Safety data were acceptable across all dose levels. No vaccine-related deaths were recorded. A single serious adverse event of tachypnoea was deemed related to study vaccine. Antibodies directed largely against Ag85A and Ag85B were detected. Low magnitude CD4+ and CD8+ polyfunctional T cell responses were observed at all dose levels. The addition of a third dose of AERAS-402 at the highest dose level did not increase frequency or magnitude of antibody or CD8+ T cell responses. CONCLUSIONS AERAS-402 has an acceptable safety profile in infants and was well tolerated at all dose levels. Response rate was lower than previously seen in BCG vaccinated adults, and frequency and magnitude of antigen-specific T cells were not increased by a third dose of vaccine.


Human Vaccines & Immunotherapeutics | 2013

Randomized, placebo-controlled trial to assess the safety and immunogenicity of an adenovirus type 35-based circumsporozoite malaria vaccine in healthy adults

C. Buddy Creech; Cornelia L. Dekker; Dora Y. Ho; Shanda Phillips; Sally Mackey; Cristina Murray-Krezan; Maria Grazia Pau; Jenny Hendriks; Valerie Brown; Leonard G Dally; Isabella Versteege; Kathryn M. Edwards

Malaria results in over 650 000 deaths each year; thus, there is an urgent need for an effective vaccine. Pre-clinical studies and recently reported human trials suggest that pre-erythrocytic stage vaccines can provide protection against infection. A Phase 1, randomized, placebo-controlled, dose-escalation study was conducted with a vaccine composed of a replication-deficient adenovirus-35 backbone with P. falciparum circumsporozoite (CS) surface antigen (Ad35.CS.01). Healthy adult subjects received three doses of 108, 109, 1010, or 1011 vp/mL Ad35.CS.01 vaccine or saline placebo intramuscularly at 0, 1, and 6-mo intervals. Adverse events were assessed and anti-CS antibody responses were determined by ELISA. Seventy-two individuals were enrolled, with age, gender, and ethnicity similar across each study arm. While the vaccine was generally well tolerated, adverse events were more frequent in the highest dose groups (1010 and 1011 vp/mL). More robust humoral responses were also noted at the highest doses, with 73% developing a positive ELISA response after the three dose series of 1011 vp/mL. The Ad35.CS.01 vaccine was most immunogenic at the highest dosages (1010 and 1011 vp/mL). Reactogenicity findings were more common after the 1011 vp/mL dose, although most were mild or moderate in nature and resolved without therapy.


PLOS ONE | 2015

A Phase I, Open-Label Trial, Evaluating the Safety and Immunogenicity of Candidate Tuberculosis Vaccines AERAS-402 and MVA85A, Administered by Prime-Boost Regime in BCG-Vaccinated Healthy Adults

Sharon Sheehan; Stephanie A. Harris; Iman Satti; David A. Hokey; Veerabadran Dheenadhayalan; Lisa Stockdale; Zita-Rose Manjaly Thomas; Alice Minhinnick; Morven Wilkie; Samantha Vermaak; Joel Meyer; Matthew K. O’Shea; Maria Grazia Pau; Isabella Versteege; Macaya Douoguih; Jenny Hendriks; Jerald C. Sadoff; Bernard Landry; Paul Moss; Helen McShane

Background MVA85A and AERAS-402 are two clinically advanced viral vectored TB vaccine candidates expressing Mycobacterium tuberculosis antigens designed to boost BCG-induced immunity. Clinical trials with candidate malaria vaccines have demonstrated that adenoviral vector based priming immunisation, followed by MVA vector boost, induced high levels of immunity. We present the safety and immunogenicity results of the first clinical trial to evaluate this immunisation strategy in TB. Methods In this phase 1, open-label trial, 40 healthy previously BCG-vaccinated participants were enrolled into three treatment groups and vaccinated with 1 or 2 doses of AERAS-402 followed by MVA85A; or 3 doses of AERAS-402. Results Most related adverse events (AEs) were mild and there were no vaccine related serious AEs. Boosting AERAS-402 with MVA85A significantly increased Ag85A-specific T-cell responses from day of vaccination. Two priming doses of AERAS-402 followed by MVA85A boost, resulted in a significantly higher AUC post-peak Ag85A response compared to three doses of AERAS-402 and historical data with MVA85A vaccination alone. The frequency of CD8+ T-cells producing IFN-γ, TNF-α and IL-2 was highest in the group receiving two priming doses of AERAS-402 followed by MVA85A. Conclusions Vaccination with AERAS-402 followed by MVA85A was safe and increased the durability of antigen specific T-cell responses and the frequency and polyfunctionality of CD8+ T-cells, which may be important in protection against TB. Further clinical trials with adenoviral prime-MVA85A boost regimens are merited to optimise vaccination intervals, dose and route of immunisation and to evaluate this strategy in the target population in TB high burden countries. Trial Registration ClinicalTrials.gov NCT01683773.


Bioanalysis | 2012

Challenges of immunogenicity assays for vaccines

Stefan Kostense; Jenny Hendriks

Clinical development of vaccines requires a specific set of specialized assays to demonstrate the immunogenicity of the vaccine. Ideally, these assays should measure immune responses that correlate with protection against disease. Antibody responses usually correlates to protection for existing vaccines, but for vaccines currently in development it is not always clear which immune responses confer protection. Developing assays for new-generation vaccines usually requires working with cells, pathogens, antigens or assay controls that are not readily available, or are hazardous materials. Validation of these assays involves many challenges, and validation requirements are not yet fully specified in regulatory guidelines or White Papers. The different requirements for clinical vaccine assays and the related challenges in developing and validating these assays are described in this article. We provide our opinion on how to approach these challenges and how to apply the existing guidelines.


Clinical and Vaccine Immunology | 2011

A Peptide-Based Plasmodium falciparum Circumsporozoite Assay To Test for Serum Antibody Responses to Pre-Erythrocyte Malaria Vaccines

Stefan Kostense; Bregje Mommaas; Jenny Hendriks; Mariëlle Verhoeven; Mariska ter Haak; Felicia Tirion; Edison Wiesken; Maria Grazia Pau; Katarina Radošević; Jaap Goudsmit

ABSTRACT Various pre-erythrocyte malaria vaccines are currently in clinical development, and among these is the adenovirus serotype 35-based circumsporozoite (CS) vaccine produced on PER.C6 cells. Although the immunological correlate of protection against malaria remains to be established, the CS antibody titer is a good marker for evaluation of candidate vaccines. Here we describe the validation of an anti-Plasmodium falciparum circumsporozoite antibody enzyme-linked immunosorbent assay (ELISA) based on the binding of antibodies to a peptide antigen mimicking the CS repeat region. The interassay variability was determined to be below a coefficient of variation (CV) of 15%, and sensitivity was sufficient to detect low antibody titers in subjects from endemic regions. Antibody titers were in agreement with total antibody responses to the whole CS protein. Due to its simplicity and high performance, the ELISA is an easy and rapid method for assessment of pre-erythrocyte malaria vaccines based on CS.

Collaboration


Dive into the Jenny Hendriks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Hokey

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Brian Abel

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge