Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenny L. Persson is active.

Publication


Featured researches published by Jenny L. Persson.


International Journal of Cancer | 2007

Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival

Barbara Wegiel; Anders Bjartell; Zoran Culig; Jenny L. Persson

Interleukin‐6 (IL6) is a growth and survival factor in human prostate cancer (PCa) cells with aggressive phenotypes and has been implicated in the progression of hormone refractory PCas. In the present study, we characterized the IL6‐triggered PI3K/Akt and MAPK/Erk signaling. We identified the A‐type cyclin, cyclin A1 as an important downstream target of PI3K/Akt. Treatment of cells with PI3K inhibitor or cotransfection with a vector expressing wild‐type PTEN decreased cyclin A1 promoter activity. Cyclin A1 promoter activity and its expression were upregulated by constitutively active myristoylated Akt and were downregulated by dominant negative Akt in response to IL6 stimulation. LNCaP cells overexpressing cyclin A1 are resistant to camptothecin‐induced apoptosis. Conversely, targeted knockdown of cyclin A1 via shRNA in LNCaP IL6+ cells resulted in decreased survival after treatment with camptothecin. This suggests that cyclin A1 is an important downstream target of PI3K/Akt that transduces survival signals in response to IL6 stimulation. Xenograft tumors generated from LNCaP‐IL6+ cells expressing IL6 had higher levels of cyclin A1 and had rapid tumor growth compared to LNCaP xenograft tumors. Taken together, IL6 might utilize PI3K/Akt and cyclin A1 to promote tumor cell survival in PCa.


Molecular Microbiology | 2001

Binding of human C4BP to the hypervariable region of M protein: a molecular mechanism of phagocytosis resistance in Streptococcus pyogenes

Karin Berggård; Eskil Johnsson; Eva Morfeldt; Jenny L. Persson; Margaretha Stålhammar-Carlemalm; Gunnar Lindahl

The amino‐terminal hypervariable region (HVR) of streptococcal M protein is required for the ability of this virulence factor to confer phagocytosis resistance. The function of the HVR has remained unknown, but the finding that many HVRs with extremely divergent sequences bind the human complement regulator C4b‐binding protein (C4BP) has suggested that this ligand may play a role in phagocytosis resistance. We used the M22 system to study the function of bound C4BP and provide several lines of evidence that C4BP indeed contributes to phagocytosis resistance. First, the ability of anti‐HVR antibodies to cause opsonization correlated with their ability to inhibit binding of C4BP. Secondly, a short deletion in the HVR eliminated C4BP binding and also reduced the ability of M22 to confer phagocytosis resistance. Thirdly, the addition of an excess of pure C4BP to a phagocytosis system almost completely blocked the effect of opsonizing anti‐HVR antibodies. Together, our data indicate that binding of C4BP to the HVR of M22 plays an important role in phagocytosis resistance, but other properties of M22 also contribute. This study provides the first molecular insight into the mechanisms by which the HVR of an M protein confers phagocytosis resistance.


Cancer Research | 2013

Carbon Monoxide Expedites Metabolic Exhaustion to Inhibit Tumor Growth

Barbara Wegiel; David Gallo; Eva Csizmadia; Clair Harris; John D. Belcher; Gregory M. Vercellotti; Nuno Penacho; Pankaj Seth; Vikas P. Sukhatme; Asif Ahmed; Pier Paolo Pandolfi; Leszek Helczynski; Anders Bjartell; Jenny L. Persson; Leo E. Otterbein

One classical feature of cancer cells is their metabolic acquisition of a highly glycolytic phenotype. Carbon monoxide (CO), one of the products of the cytoprotective molecule heme oxygenase-1 (HO-1) in cancer cells, has been implicated in carcinogenesis and therapeutic resistance. However, the functional contributions of CO and HO-1 to these processes are poorly defined. In human prostate cancers, we found that HO-1 was nuclear localized in malignant cells, with low enzymatic activity in moderately differentiated tumors correlating with relatively worse clinical outcomes. Exposure to CO sensitized prostate cancer cells but not normal cells to chemotherapy, with growth arrest and apoptosis induced in vivo in part through mitotic catastrophe. CO targeted mitochondria activity in cancer cells as evidenced by higher oxygen consumption, free radical generation, and mitochondrial collapse. Collectively, our findings indicated that CO transiently induces an anti-Warburg effect by rapidly fueling cancer cell bioenergetics, ultimately resulting in metabolic exhaustion.


Journal of the National Cancer Institute | 2008

Multiple Cellular Mechanisms Related to Cyclin A1 in Prostate Cancer Invasion and Metastasis

Barbara Wegiel; Anders Bjartell; Johanna Tuomela; Nishtman Dizeyi; Martina Tinzl; Leszek Helczynski; Elise Nilsson; Leo E. Otterbein; Pirkko Härkönen; Jenny L. Persson

BACKGROUND Cyclin A1 is a cell cycle regulator that has been implicated in the progression of prostate cancer. Its role in invasion and metastasis of this disease has not been characterized. METHODS Immunohistochemistry and cDNA microarray analyses were used to assess protein and mRNA expression of cyclin A1 and proteins with roles in metastasis, including vascular endothelial growth factor (VEGF), metalloproteinase 2 (MMP2), and MMP9, in human prostate cancer. Transient transfection and infection with viral vectors expressing cyclin A1 and short hairpin RNA (shRNA) targeting cyclin A1 were used to study the effects of altered cyclin A1 expression in PC3 prostate cancer cells. The BrdU assay, annexin V staining, and invasion chambers were used to examine cyclin A1 effects on proliferation, apoptosis, and invasion, respectively. The role of cyclin A1 and androgen receptor (AR) in transcription of VEGF and MMP2 was assessed by promoter mutation and chromatin immunoprecipitation. The effect of cyclin A1 expression on tumor growth and metastasis was analyzed in a mouse model of metastasis. All statistical tests were two-sided. RESULTS Cyclin A1 protein and mRNA expression were statistically significantly higher in prostate cancers than in adjacent benign tissues. A statistically significant correlation between expression of cyclin A1 and of MMP2, MMP9, and VEGF was observed in prostate tumors from 482 patients (P values from Spearman rank correlation tests < .001). PC3 cells that overexpressed cyclin A1 showed increased invasiveness, and inhibition of cyclin A1 expression via shRNA expression reduced invasiveness of these cells. Eight of 10 mice (80%) bearing PC3 cells overexpressing cyclin A1 had infiltration of tumor cells in lymph node, liver, and lung, but all 10 mice bearing tumors expressing control vector were free of liver and lung metastases and only one mouse from this group had lymph node metastasis (P values from Fisher exact tests < .001). Cyclin A1, in concert with AR, bound to and increased expression from the VEGF and MMP2 promoters. CONCLUSIONS Cyclin A1 contributes to prostate cancer invasion by modulating the expression of MMPs and VEGF and by interacting with AR.


Cancer Research | 2008

SRPK2 Promotes Leukemia Cell Proliferation by Phosphorylating Acinus and Regulating Cyclin A1

Sung-Wuk Jang; Seung-ju Yang; Åsa Ehlén; Shaozhong Dong; Hanna Jean Khoury; Jing Chen; Jenny L. Persson; Keqiang Ye

Serine/arginine (SR) protein-specific kinase (SRPK), a family of cell cycle-regulated protein kinases, phosphorylate SR domain-containing proteins in nuclear speckles and mediate the pre-mRNA splicing. However, the physiologic roles of this event in cell cycle are incompletely understood. Here, we show that SRPK2 binds and phosphorylates acinus, an SR protein essential for RNA splicing, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not A2 up-regulation. Acinus S422D, an SRPK2 phosphorylation mimetic, enhances cyclin A1 transcription, whereas acinus S422A, an unphosphorylatable mutant, blocks the stimulatory effect of SRPK2. Ablation of acinus or SRPK2 abrogates cyclin A1 expression in leukemia cells and arrest cells at G(1) phase. Overexpression of acinus or SRPK2 increases leukemia cell proliferation. Furthermore, both SRPK2 and acinus are overexpressed in some human acute myelogenous leukemia patients and correlate with elevated cyclin A1 expression levels, fitting with the oncogenic activity of cyclin A1 in leukemia. Thus, our findings establish a molecular mechanism by which SR splicing machinery regulates cell cycle and contributes to leukemia tumorigenesis.


Current Drug Targets | 2012

Overcoming Drug Resistance and Treating Advanced Prostate Cancer.

Julius Semenas; Cinzia Allegrucci; Stephen A. Boorjian; Nigel P. Mongan; Jenny L. Persson

Most of the prostate cancers (PCa) in advanced stage will progress to castration-resistant prostate cancer (CRPC). Within CRPC group, 50-70% of the patients will develop bone metastasis in axial and other regions of the skeleton. Once PCa cells spread to the bone, currently, no treatment regimens are available to eradicate the metastasis, and cancer-related death becomes inevitable. In 2012, it is estimated that there will be 28,170 PCa deaths in the United States. Thus, PCa bone metastasis-associated clinical complications and treatment resistance pose major clinical challenges. In this review, we will present recent findings on the molecular and cellular pathways that are responsible for bone metastasis of PCa. We will address several novel mechanisms with a focus on the role of bone and bone marrow microenvironment in promoting PCa metastasis, and will further discuss why prostate cancer cells preferentially metastasize to the bone. Additionally, we will discuss novel roles of several key pathways, including angiogenesis and extracellular matrix remodeling in bone marrow and stem cell niches with their relationship to PCa bone metastasis and poor treatment response. We will evaluate how various chemotherapeutic drugs and radiation therapies may allow aggressive PCa cells to gain advantageous mutations leading to increased survival and rendering the cancer cells to become resistant to treatment. The novel concept relating several key survival and invasion signaling pathways to stem cell niches and treatment resistance will be reviewed. Lastly, we will provide an update of several recently developed novel drug candidates that target metastatic cancer microenvironments or niches, and discuss the advantages and significance provided by such therapeutic approaches in pursuit of overcoming drug resistance and treating advanced PCa.


Journal of Biological Chemistry | 2006

Human C4b-binding Protein, Structural Basis for Interaction with Streptococcal M Protein, a Major Bacterial Virulence Factor

Huw T. Jenkins; Linda Mark; Graeme Ball; Jenny L. Persson; Gunnar Lindahl; Dušan Uhrín; Anna M. Blom; Paul N. Barlow

Human C4b-binding protein (C4BP) protects host tissue, and those pathogens able to hijack this plasma glycoprotein, from complement-mediated destruction. We now show that the first two complement control protein (CCP) modules of the C4BP α-chain, plus the four residues connecting them, are necessary and sufficient for binding a bacterial virulence factor, the Streptococcus pyogenes M4 (Arp4) protein. Structure determination by NMR reveals two tightly coupled CCP modules in an elongated arrangement within this region of C4BP. Chemical shift perturbation studies demonstrate that the N-terminal, hypervariable region of M4 binds to a site including strand 1 of CCP module 2. This interaction is accompanied by an intermodular reorientation within C4BP. We thus provide a detailed picture of an interaction whereby a pathogen evades complement.


Leukemia & Lymphoma | 2007

Protein expression and cellular localization in two prognostic subgroups of diffuse large B-cell lymphoma: Higher expression of ZAP70 and PKC-beta II in the non-germinal center group and poor survival in patients deficient in nuclear PTEN

Marie Fridberg; Anna Servin; Lola Anagnostaki; Johan Linderoth; Mattias Berglund; Ola Söderberg; Gunilla Enblad; Anders Rosén; Tomas Mustelin; Mats Jerkeman; Jenny L. Persson; Anette Gjörloff Wingren

Patients diagnosed with diffuse large B-cell lymphoma (DLBCL) show varying responses to conventional therapy, and this might be contributed to the differentiation stage of the tumor B-cells. The aim of the current study was to evaluate a panel of kinases (ZAP70, PKC-β I and II and phosphorylated PKB/Akt) and phosphatases (PTEN, SHP1 and SHP2) known to be frequently deregulated in lymphoid malignancies. De novo DLBCL cases were divided into two subgroups, the germinal center (GC) group (14/28) and the non-germinal center (non-GC) or activated B-cell (ABC) group (14/28). ZAP70 and PKC-β II were expressed in a significantly higher percentage of tumor cells in the clinically more aggressive non-GC group compared with the prognostically favourable GC group. Also, the subcellular localization of PKC-β I and II differed in DLBCL cells, with the PKC-β I isoform being expressed in both the cytoplasm and nucleus, while PKC-β II was found exclusively in the cytoplasm. Loss of nuclear PTEN correlated with poor survival in cases from both subgroups. In addition, five cell lines of DLBCL origin were analyzed for protein expression and for mRNA levels of PTEN and SHP1. For the first time, we show that ZAP70 is expressed in a higher percentage of tumor cells in the aggressive non-GC subgroup of DLBCL and that PKC-β I and II are differently distributed in the two prognostic subgroups of de novo DLBCL.


Molecular Oncology | 2013

The lysine specific demethylase‐1 (LSD1/KDM1A) regulates VEGF‐A expression in prostate cancer

Vasundhra Kashyap; Shafqat Ahmad; Emeli M. Nilsson; Leszek Helczynski; Sinéad Kenna; Jenny L. Persson; Lorraine J. Gudas; Nigel P. Mongan

Recurrent prostate cancer remains a major clinical challenge. The lysine specific demethylase‐1 (LSD1/KDM1A), together with the JmjC domain‐containing JMJD2A and JMJD2C proteins, have emerged as critical regulators of histone lysine methylation. The LSD1–JMJD2 complex functions as a transcriptional co‐regulator of hormone activated androgen and estrogen receptors at specific gene promoters. LSD1 also regulates DNA methylation and p53 function. LSD1 is overexpressed in numerous cancers including prostate cancer through an unknown mechanism. We investigated expression of the LSD1 and JMJD2A in malignant human prostate specimens. We correlated LSD1 and JMJD2A expression with known mediators of prostate cancer progression: VEGF‐A and cyclin A1. We show that elevated expression of LSD1, but not JMJD2A, correlates with prostate cancer recurrence and with increased VEGF‐A expression. We show that functional depletion of LSD1 expression using siRNA in prostate cancer cells decreases VEGF‐A and blocks androgen induced VEGF‐A, PSA and Tmprss2 expression. We demonstrate that pharmacological inhibition of LSD1 reduces proliferation of both androgen dependent (LnCaP) and independent cell lines (LnCaP: C42, PC3). We show a direct mechanistic link between LSD1 over‐expression and increased activity of pro‐angiogenic pathways. New therapies targeting LSD1 activity should be useful in the treatment of hormone dependent and independent prostate cancer.


PLOS ONE | 2009

Cystatin C is downregulated in prostate cancer and modulates invasion of prostate cancer cells via MAPK/Erk and androgen receptor pathways.

Barbara Wegiel; Thomas Jiborn; Magnus Abrahamson; Leszek Helczynski; Leo E. Otterbein; Jenny L. Persson; Anders Bjartell

Cystatin C is believed to prevent tumor progression by inhibiting the activities of a family of lysosomal cysteine proteases. However, little is known about the precise mechanism of cystatin C function in prostate cancer. In the present study, we examined the expression of cystatin C and its association with matrix metalloproteinases 2 (MMP2) and androgen receptor (AR) in a tissue microarray comparing benign and malignant specimens from 448 patients who underwent radical prostatectomy for localized prostate cancer. Cystatin C expression was significantly lower in cancer specimens than in benign tissues (p<0.001) and there was a statistically significant inverse correlation between expression of cystatin C and MMP2 (rs 2 = −0.056, p = 0.05). There was a clear trend that patients with decreased level of cystatin C had lower overall survival. Targeted inhibition of cystatin C using specific siRNA resulted in an increased invasiveness of PC3 cells, whereas induction of cystatin C overexpression greatly reduced invasion rate of PC3 in vitro. The effect of cystatin C on modulating the PC3 cell invasion was provoked by Erk2 inhibitor that specifically inhibited MAPK/Erk2 activity. This suggests that cystatin C may mediate tumor cell invasion by modulating the activity of MAPK/Erk cascades. Consistent with our immunohistochemical findings that patients with low expression of cystatin C and high expression of androgen receptor (AR) tend to have worse overall survival than patients with high expression of cystatin C and high AR expression, induced overexpression of AR in PC3 cells expressing cystatin C siRNA greatly enhanced the invasiveness of PC3 cells. This suggests that there may be a crosstalk between cystatin C and AR-mediated pathways. Our study uncovers a novel role for cystatin C and its associated cellular pathways in prostate cancer invasion and metastasis.

Collaboration


Dive into the Jenny L. Persson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Wegiel

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leo E. Otterbein

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niels Ødum

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge