Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenny Tung is active.

Publication


Featured researches published by Jenny Tung.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Social environment is associated with gene regulatory variation in the rhesus macaque immune system

Jenny Tung; Luis B. Barreiro; Zachary P. Johnson; Kasper D. Hansen; Vasiliki Michopoulos; Donna Toufexis; Katelyn Michelini; Mark E. Wilson; Yoav Gilad

Variation in the social environment is a fundamental component of many vertebrate societies. In humans and other primates, adverse social environments often translate into lasting physiological costs. The biological mechanisms associated with these effects are therefore of great interest, both for understanding the evolutionary impacts of social behavior and in the context of human health. However, large gaps remain in our understanding of the mechanisms that mediate these effects at the molecular level. Here we addressed these questions by leveraging the power of an experimental system that consisted of 10 social groups of female macaques, in which each individuals social status (i.e., dominance rank) could be experimentally controlled. Using this paradigm, we show that dominance rank results in a widespread, yet plastic, imprint on gene regulation, such that peripheral blood mononuclear cell gene expression data alone predict social status with 80% accuracy. We investigated the mechanistic basis of these effects using cell type-specific gene expression profiling and glucocorticoid resistance assays, which together contributed to rank effects on gene expression levels for 694 (70%) of the 987 rank-related genes. We also explored the possible contribution of DNA methylation levels to these effects, and identified global associations between dominance rank and methylation profiles that suggest epigenetic flexibility in response to status-related behavioral cues. Together, these results illuminate the importance of the molecular response to social conditions, particularly in the immune system, and demonstrate a key role for gene regulation in linking the social environment to individual physiology.


BMC Biology | 2014

RNA-seq: impact of RNA degradation on transcript quantification

Irene Gallego Romero; Athma A. Pai; Jenny Tung; Yoav Gilad

BackgroundThe use of low quality RNA samples in whole-genome gene expression profiling remains controversial. It is unclear if transcript degradation in low quality RNA samples occurs uniformly, in which case the effects of degradation can be corrected via data normalization, or whether different transcripts are degraded at different rates, potentially biasing measurements of expression levels. This concern has rendered the use of low quality RNA samples in whole-genome expression profiling problematic. Yet, low quality samples (for example, samples collected in the course of fieldwork) are at times the sole means of addressing specific questions.ResultsWe sought to quantify the impact of variation in RNA quality on estimates of gene expression levels based on RNA-seq data. To do so, we collected expression data from tissue samples that were allowed to decay for varying amounts of time prior to RNA extraction. The RNA samples we collected spanned the entire range of RNA Integrity Number (RIN) values (a metric commonly used to assess RNA quality). We observed widespread effects of RNA quality on measurements of gene expression levels, as well as a slight but significant loss of library complexity in more degraded samples.ConclusionsWhile standard normalizations failed to account for the effects of degradation, we found that by explicitly controlling for the effects of RIN using a linear model framework we can correct for the majority of these effects. We conclude that in instances in which RIN and the effect of interest are not associated, this approach can help recover biologically meaningful signals in data from degraded RNA samples.


eLife | 2015

Social networks predict gut microbiome composition in wild baboons

Jenny Tung; Luis B. Barreiro; Michael B. Burns; Jean Christophe Grenier; Josh Lynch; Laura E. Grieneisen; Jeanne Altmann; Susan C. Alberts; Ran Blekhman; Elizabeth A. Archie

Social relationships have profound effects on health in humans and other primates, but the mechanisms that explain this relationship are not well understood. Using shotgun metagenomic data from wild baboons, we found that social group membership and social network relationships predicted both the taxonomic structure of the gut microbiome and the structure of genes encoded by gut microbial species. Rates of interaction directly explained variation in the gut microbiome, even after controlling for diet, kinship, and shared environments. They therefore strongly implicate direct physical contact among social partners in the transmission of gut microbial species. We identified 51 socially structured taxa, which were significantly enriched for anaerobic and non-spore-forming lifestyles. Our results argue that social interactions are an important determinant of gut microbiome composition in natural animal populations—a relationship with important ramifications for understanding how social relationships influence health, as well as the evolution of group living. DOI: http://dx.doi.org/10.7554/eLife.05224.001


Molecular Ecology | 2008

Age at maturity in wild baboons: genetic, environmental and demographic influences

Marie J. E. Charpentier; Jenny Tung; Jeanne Altmann; Susan C. Alberts

The timing of early life‐history events, such as sexual maturation and first reproduction, can greatly influence variation in individual fitness. In this study, we analysed possible sources of variation underlying different measures of age at social and physical maturation in wild baboons in the Amboseli basin, Kenya. The Amboseli baboons are a natural population primarily comprised of yellow baboons (Papio cynocephalus) that occasionally hybridize with anubis baboons (Papio anubis) from outside the basin. We found that males and females differed in the extent to which various factors influenced their maturation. Surprisingly, we found that male maturation was most strongly related to the proportion of anubis ancestry revealed by their microsatellite genotypes: hybrid males matured earlier than yellow males. In contrast, although hybrid females reached menarche slightly earlier than yellow females, maternal rank and the presence of maternal relatives had the largest effects on female maturation, followed by more modest effects of group size and rainfall. Our results indicate that a complex combination of demographic, genetic, environmental, and maternal effects contribute to variation in the timing of these life‐history milestones.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Social affiliation matters: both same-sex and opposite-sex relationships predict survival in wild female baboons

Elizabeth A. Archie; Jenny Tung; Michael J. Clark; Jeanne Altmann; Susan C. Alberts

Social integration and support can have profound effects on human survival. The extent of this phenomenon in non-human animals is largely unknown, but such knowledge is important to understanding the evolution of both lifespan and sociality. Here, we report evidence that levels of affiliative social behaviour (i.e. ‘social connectedness’) with both same-sex and opposite-sex conspecifics predict adult survival in wild female baboons. In the Amboseli ecosystem in Kenya, adult female baboons that were socially connected to either adult males or adult females lived longer than females who were socially isolated from both sexes—females with strong connectedness to individuals of both sexes lived the longest. Female social connectedness to males was predicted by high dominance rank, indicating that males are a limited resource for females, and females compete for access to male social partners. To date, only a handful of animal studies have found that social relationships may affect survival. This study extends those findings by examining relationships to both sexes in by far the largest dataset yet examined for any animal. Our results support the idea that social effects on survival are evolutionarily conserved in social mammals.


Molecular Ecology | 2008

Genetic evidence reveals temporal change in hybridization patterns in a wild baboon population

Jenny Tung; Marie J. E. Charpentier; David A. Garfield; Jeanne Altmann; Susan C. Alberts

The process and consequences of hybridization are of interest to evolutionary biologists because of the importance of hybridization in understanding reproductive isolation, speciation, and the influence of introgression on population genetic structure. Recent studies of hybridization have been enhanced by the advent of sensitive, genetic marker‐based techniques for inferring the degree of admixture occurring within individuals. Here we present a genetic marker‐based analysis of hybridization in a large‐bodied, long‐lived mammal over multiple generations. We analysed patterns of hybridization between yellow baboons (Papio cynocephalus) and anubis baboons (Papio anubis) in a well‐studied natural population in Amboseli National Park, Kenya, using genetic samples from 450 individuals born over the last 36 years. We assigned genetic hybrid scores based on genotypes at 14 microsatellite loci using the clustering algorithm implemented in structure 2.0, and assessed the robustness of these scores by comparison to pedigree information and through simulation. The genetic hybrid scores showed generally good agreement with previous morphological assessments of hybridity, but suggest that genetic methods may be more sensitive for identification of low levels of hybridity. The results of our analysis indicate that the proportion of hybrids in the Amboseli population has grown over time, but that the average proportion of anubis ancestry within hybrids is gradually decreasing. We argue that these patterns are probably a result of both selective and nonselective processes, including differences in the timing of life‐history events for hybrid males relative to yellow baboon males, and stochasticity in long‐distance dispersal from the source anubis population into Amboseli.


Nature | 2009

Evolution of a malaria resistance gene in wild primates

Jenny Tung; Alexander Primus; Andrew J. Bouley; Tonya F. Severson; Susan C. Alberts; Gregory A. Wray

The ecology, behaviour and genetics of our closest living relatives, the nonhuman primates, should help us to understand the evolution of our own lineage. Although a large amount of data has been amassed on primate ecology and behaviour, much less is known about the functional and evolutionary genetic aspects of primate biology, especially in wild primates. As a result, even in well-studied populations in which nongenetic factors that influence adaptively important characteristics have been identified, we have almost no understanding of the underlying genetic basis for such traits. Here, we report on the functional consequences of genetic variation at the malaria-related FY (DARC) gene in a well-studied population of yellow baboons (Papio cynocephalus) living in Amboseli National Park in Kenya. FY codes for a chemokine receptor normally expressed on the erythrocyte surface that is the known entry point for the malarial parasite Plasmodium vivax. We identified variation in the cis-regulatory region of the baboon FY gene that was associated with phenotypic variation in susceptibility to Hepatocystis, a malaria-like pathogen that is common in baboons. Genetic variation in this region also influenced gene expression in vivo in wild individuals, a result we confirmed using in vitro reporter gene assays. The patterns of genetic variation in and around this locus were also suggestive of non-neutral evolution, raising the possibility that the evolution of the FY cis-regulatory region in baboons has exhibited both mechanistic and selective parallels with the homologous region in humans. Together, our results represent the first reported association and functional characterization linking genetic variation and a complex trait in a natural population of nonhuman primates.


Animal Behaviour | 2013

Role of grooming in reducing tick load in wild baboons (Papio cynocephalus)

Mercy Y. Akinyi; Jenny Tung; Maamun Jeneby; Nilesh B. Patel; Jeanne Altmann; Susan C. Alberts

Nonhuman primate species spend a conspicuous amount of time grooming during social interactions, a behavior that probably serves both social and health-related functions. While the social implications of grooming have been relatively well studied, less attention has been paid to the health benefits, especially the removal of ectoparasites, which may act as vectors in disease transmission. In this study, we examined the relationship between grooming behavior, tick load (number of ticks), and haemoprotozoan infection status in a population of wild free-ranging baboons (Papio cynocephalus). We found that the amount of grooming received was influenced by an individuals age, sex and dominance rank. The amount of grooming received, in turn, affected the tick load of an individual. Baboons with higher tick loads had lower packed red cell volume (PCV or haematocrit), one general measure of health status. We detected a tick-borne haemoprotozoan, Babesia microti, but its low prevalence in the population precluded identifying sources of variance in infection.


Molecular Ecology | 2012

Genetic structure in a dynamic baboon hybrid zone corroborates behavioural observations in a hybrid population

Marie J. E. Charpentier; Michael Fontaine; E. Cherel; Julien P. Renoult; T. Jenkins; Laure Benoit; Nicolas Barthes; Susan C. Alberts; Jenny Tung

Behaviour and genetic structure are intimately related: mating patterns and patterns of movement between groups or populations influence the movement of genetic variation across the landscape and from one generation to the next. In hybrid zones, the behaviour of the hybridizing taxa can also impact the incidence and outcome of hybridization events. Hybridization between yellow baboons and anubis baboons has been well documented in the Amboseli basin of Kenya, where more anubis‐like individuals tend to experience maturational and reproductive advantages. However, it is unknown whether these advantages are reflected in the genetic structure of populations surrounding this area. Here, we used microsatellite genotype data to evaluate the structure and composition of baboon populations in southern Kenya. Our results indicate that, unlike for mitochondrial DNA, microsatellite‐based measures of genetic structure concord with phenotypically based taxonomic distinctions and that the currently active hybrid zone is relatively narrow. Isolation with migration analysis revealed asymmetric gene flow in this region from anubis populations into yellow populations, in support of the anubis‐biased phenotypic advantages observed in Amboseli. Populations that are primarily yellow but that receive anubis gene flow exhibit higher levels of genetic diversity than yellow populations far from the introgression front. Our results support previous work that indicates a long history of hybridization and introgression among East African baboons. Specifically, it suggests that anubis baboons are in the process of gradual range expansion into the range of yellow baboons, a pattern potentially explained by behavioural and life history advantages that correlate with anubis ancestry.


Genome Research | 2015

Bacterial infection remodels the DNA methylation landscape of human dendritic cells

Alain Pacis; Ludovic Tailleux; Alexander M. Morin; John J. Lambourne; Julia L. MacIsaac; Vania Yotova; Anne Dumaine; Anne Danckaert; Francesca Luca; Jean Christophe Grenier; Kasper D. Hansen; Brigitte Gicquel; Miao Yu; Athma A. Pai; Chuan He; Jenny Tung; Tomi Pastinen; Michael S. Kobor; Roger Pique-Regi; Yoav Gilad; Luis B. Barreiro

DNA methylation is an epigenetic mark thought to be robust to environmental perturbations on a short time scale. Here, we challenge that view by demonstrating that the infection of human dendritic cells (DCs) with a live pathogenic bacteria is associated with rapid and active demethylation at thousands of loci, independent of cell division. We performed an integrated analysis of data on genome-wide DNA methylation, histone mark patterns, chromatin accessibility, and gene expression, before and after infection. We found that infection-induced demethylation rarely occurs at promoter regions and instead localizes to distal enhancer elements, including those that regulate the activation of key immune transcription factors. Active demethylation is associated with extensive epigenetic remodeling, including the gain of histone activation marks and increased chromatin accessibility, and is strongly predictive of changes in the expression levels of nearby genes. Collectively, our observations show that active, rapid changes in DNA methylation in enhancers play a previously unappreciated role in regulating the transcriptional response to infection, even in nonproliferating cells.

Collaboration


Dive into the Jenny Tung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge