Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens Bertram is active.

Publication


Featured researches published by Jens Bertram.


Journal of Occupational and Environmental Medicine | 2010

Internal exposure, effect monitoring, and lung function in welders after acute short-term exposure to welding fumes from different welding processes.

Peter Brand; Monika Gube; Kerstin Gerards; Jens Bertram; Heinz Kaminski; A.C. John; Thomas A. J. Kuhlbusch; Martin Wiemann; Christian Eisenbeis; Reinhard Winkler; Thomas Kraus

Objective: In this study, the effect of short-term exposure to welding fumes emitted by different welding techniques on workers was investigated. Methods: In a 3-fold crossover study, six welders used three different welding techniques for 3 hours. Before and after welding, blood and urine samples were collected to perform biomonitoring of metals. Breath condensate was collected to assess inflammatory reactions, and lung function measurements were performed. Results: Welding led to a significant increase of chromium and nickel in blood and urine and of nitrate and nitrite in exhaled breath condensate. These increases were higher for manual metal arc welding with alloyed material (MAW-a). Several lung function parameters decreased after welding. This decrease was significantly higher after MAW-a. Conclusions: In respect to biological effects, MAW-a seems to be more important than other welding techniques.


International Journal of Hygiene and Environmental Health | 2014

Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans

L. Hartmann; M. Bauer; Jens Bertram; Monika Gube; Klaus Lenz; Uwe Reisgen; Thomas Schettgen; Thomas Kraus; Peter Brand

The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising.


Talanta | 2015

Highly selective and automated online SPE LC–MS3 method for determination of cortisol and cortisone in human hair as biomarker for stress related diseases

Natalia Quinete; Jens Bertram; Marcus Reska; Jessica Lang; Thomas Kraus

Hair analysis has been increasingly used to establish long-term biomarkers of exposure to both endogenous and exogenous substances, with a special emphasis on steroidal hormones. Hair cortisol and cortisone have been associated to physiological and psychological strains, anxiety and depression. Hair is a very complex matrix, which might jeopardize analyte detection at low concentrations. A new, highly selective and sensitive method based on fragments of second order, MS(3) (MS/MS/MS), was developed and validated for the analysis of hair cortisol and cortisone. An online solid phase extraction was performed on a C8 restricted access material (RAM) phase following by separation on a reversed-phase C18 column using methanol and 0.02% ammonium hydroxide as mobile phase. The developed method required minimal sample preparation and the injection of only 50 µL of sample leading to a LOQ of 2 pg mg(-1). Good linear responses were observed in the range 2-200 pg mg(-1) (R(2)>0.99) and extraction recoveries ranged between 77-125% and 70-123% for cortisol and cortisone, respectively. Intra- and inter-assay coefficients of variation were between 1.4 and 14%. In order to evaluate the applicability of the method, preliminary tests (N=33) were conducted in 3 cm hair samples (close to scalp) of healthy volunteers with an age range of 4-63. Average concentrations in hair were 12.7±14 pg mg(-1) and 41.6±42 pg mg(-1) for cortisol and cortisone, respectively. Further investigations on cortisol and cortisone as biomarkers for chronic psychological strain will be assessed as a next step.


Talanta | 2012

Accurate quantification of the mercapturic acids of acrylonitrile and its genotoxic metabolite cyanoethylene-epoxide in human urine by isotope-dilution LC-ESI/MS/MS

Thomas Schettgen; Jens Bertram; Thomas Kraus

Acrylonitrile is a highly important industrial chemical with a high production volume worldwide, especially in the plastics industry. It is classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC group 2B). During metabolism of acrylonitrile, the genotoxic metabolite cyanoethylene-epoxide is formed. The urinary mercapturic acids of acrylonitrile, namely N-acetyl-S-(2-cyanoethyl)-L-cysteine (CEMA) and cyanoethylene-epoxide, namely N-acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine (CHEMA) are specific biomarkers for the determination of individual internal exposure to acrylonitrile and its highly reactive metabolite. We have developed and validated a sensitive method for the accurate determination of CEMA and CHEMA in human urine with a multidimensional LC/MS/MS-method using deuterium-labelled analogues for both analytes as internal standards. Analytes were stripped from urinary matrix by online extraction on a restricted access material, transferred to the analytical column and determined by tandem mass spectrometry. The limit of quantification (LOQ) for CEMA and CHEMA was 1 μg/L urine and allowed to quantify the background exposure of the (smoking) general population. Precision within and between series for CHEMA ranged from 2.6 to 8.0% at four concentrations ranging from 8.3 to 86 μg/L urine, mean accuracy was between 94 and 100%. For CEMA, precision within and between series ranged from 2.4 to 14.5% at four concentrations ranging from 15.1 to 196 μg/L urine, mean accuracy was between 91 and 104%. We applied the method to spot urine samples of 83 subjects of the general population with no known occupational exposure to acrylonitrile. Median levels (range) for CEMA and CHEMA in urine samples of non-smokers (n=47) were 1.9 μg/L (<1-16.4 μg/L) and<1 μg/L (<1-3 μg/L), while in urine samples of smokers (n=36), median levels were 184 μg/L (2-907 μg/L) and 29.3 μg/L (<1-147 μg/L), respectively. Smokers showed a significantly higher excretion of both acrylonitrile metabolites (p<0.001). Due to its automation and high sensitivity, our method is well suited for application in experimental studies on acrylonitrile metabolism or occupational studies.


Analytical and Bioanalytical Chemistry | 2014

Analytical approaches for the determination of PCB metabolites in blood: a review

Natalia Quinete; Thomas Schettgen; Jens Bertram; Thomas Kraus

Polychlorinated biphenyls (PCBs) are among the most ubiquitous pollutants in the environment, and their metabolism leads to the formation of hydroxylated PCBs (OH-PCBs) and methyl sulfone PCBs (MeSO2-PCBs). These metabolites are generally more hydrophilic than the parent compound, and therefore are more easily eliminated from the body. However, some congeners have been shown to be strongly retained in human blood, binding to transthyretin with an affinity that is, in general, greater than that of the natural ligand thyroxin itself, which could result in toxicological effects, particularly on the thyroid system. Currently available analytical methods require, in general, extensive sample preparation, which includes a series of time-consuming and low-throughput liquid–liquid and back extractions, evaporations, several cleanup steps, and in some cases, derivatization prior to analysis by gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS). Recent developments in the use of LC coupled with tandem MS (MS/MS) have brought some improvements in terms of sample preparation for the determination of PCB metabolites in blood, although there are still possibilities for continued development. The selected literature has evidenced few studies of LC–MS/MS-based methods, a lack of analytical standards, nonassessment of lower-chlorinated OH-PCBs, and scarce attention to MeSO2-PCBs in blood. This review aims to evaluate critically the currently available analytical methods for determination of OH-PCBs and MeSO2-PCBs in blood.


Journal of Occupational and Environmental Medicine | 2015

Assessment of the Biological Effects of Welding Fumes Emitted From Metal Active Gas and Manual Metal Arc Welding in Humans

Dewald E; Monika Gube; Baumann R; Jens Bertram; Kossack; Klaus Lenz; Uwe Reisgen; Thomas Kraus; Peter Brand

Objective: Emissions from a particular welding process, metal inert gas brazing of zinc-coated steel, induce an increase in C-reactive protein. In this study, it was investigated whether inflammatory effects could also be observed for other welding procedures. Methods: Twelve male subjects were separately exposed to (1) manual metal arc welding fumes, (2) filtered air, and (3) metal active gas welding fumes for 6 hours. Inflammatory markers were measured in serum before, and directly, 1 and 7 days after exposure. Results: Although C-reactive protein concentrations remained unchanged, neutrophil concentrations increased directly after exposure to manual metal arc welding fumes, and endothelin-1 concentrations increased directly and 24 hours after exposure. After exposure to metal active gas and filtered air, endothelin-1 concentrations decreased. Conclusions: The increase in the concentrations of neutrophils and endothelin-1 may characterize a subclinical inflammatory reaction, whereas the decrease of endothelin-1 may indicate stress reduction.


Annals of Occupational Hygiene | 2015

Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel.

Jens Bertram; Peter Brand; Thomas Schettgen; Klaus Lenz; Ellwyn Purrio; Uwe Reisgen; Thomas Kraus

OBJECTIVES The uptake and elimination of metals from welding fumes is currently not fully understood. In the Aachen Workplace Simulation Laboratory (AWSL) it is possible to investigate the impact of welding fumes on human subjects under controlled exposure conditions. In this study, the uptake and elimination of chromium or chromium (VI) respectively as well as nickel was studied in subjects after exposure to the emissions of a manual metal arc welding process using low or high alloyed steel. METHODS In this present study 12 healthy male non-smokers, who never worked as welders before, were exposed for 6h to welding fumes of a manual metal arc welding process. In a three-fold crossover study design, subjects were exposed in randomized order to either clean air, emissions from welding low alloyed steel, and emissions from welding high alloyed steel. Particle mass concentration of the exposure aerosol was 2.5mg m(-3). The content of chromium and nickel in the air was determined by analysing air filter samples on a high emission scenario. Urine analysis for chromium and nickel was performed before and after exposure using methods of human biomonitoring. RESULTS There were significantly elevated chromium levels after exposure to welding fumes from high alloyed steel compared to urinary chromium levels before exposure to high alloyed welding fumes, as well as compared to the other exposure scenarios. The mean values increased from 0.27 µg l(-1) to 18.62 µg l(-1). The results were in good agreement with already existing correlations between external and internal exposure (German exposure equivalent for carcinogenic working materials EKA). The variability of urinary chromium levels was high. For urinary nickel no significant changes could be detected at all. CONCLUSIONS Six-hour exposure to 2.5mg m(-3) high alloyed manual metal arc welding fumes lead to elevated urinary chromium levels far higher (7.11-34.16 µg l(-1)) than the German biological exposure reference value (BAR) of 0.6 µg l(-1) directly after exposure. On the other hand mean urinary nickel concentrations slightly increased, but did not exceed background levels due to lower bioavailability. We could underline with our single exposure experiment that a welding work related chromium exposure can be measured immediately after the work shift, while the same is not possible for nickel exposure due to lower nickel bioavailability. The data provide useful information for real occupational welding work places.


Journal of Chromatography B | 2017

Quantification of N-methylmalonamic acid in urine as metabolite of the biocides methylisothiazolinone and chloromethylisothiazolinone using gas chromatography-tandem mass spectrometry

Thomas Schettgen; Jens Bertram; Thomas Kraus

Methylisothiazolinone and the mixture of chloromethylisothiazolinone/methylisothiazolinone (MCI/MI, 3:1) are widespread biocides used in cosmetic and household products. Due to their skin permeability, they might be taken up by the general population via use of products containing these biocides. As both compounds are known skin sensitizers, the use of these products is under discussion by regulatory agencies. In order to evaluate the possible uptake of MI and/or MCI/MI by human biomonitoring, we have developed and validated a highly sensitive and specific GC/MS/MS-method for the quantification of N-methylmalonamic acid (NMMA), a known metabolite of MI and MCI in urine of rats. After freeze-drying of urine, the analyte is derivatised with pentafluorobenzyl bromide in anhydrous solution and the PFB-derivative is extracted into n-hexane. After concentration, the derivative is finally quantified by GC/MS/MS in EI-mode using 13C3-NMMA as internal standard. The limit of quantification for NMMA was 0.5ngmL-1 urine. Precision within and between-series was determined to range between 3.7-10.9% using native and spiked quality control samples. Accuracy ranged between 89 and 114%. In a pilot study we applied this method to spot urine samples of 63 persons not knowingly exposed to MI and/or MCI/MI. NMMA was quantifiable in every urine sample analysed, with no significant difference in urinary levels between male and female participants. The median (95th percentile) levels for urinary NMMA were 3.6 (7.4) ngmg-1 creatinine and 2.9 (9.1) ngmg-1 creatinine for males (n=32) and females (n=31), respectively. In a volunteer experiment, a relation of exposure to MI and/or MCI/MI and subsequent NMMA-excretion was shown. Our method is the first to report human urinary background levels of NMMA. However, the possibility of formation and urinary excretion of NMMA within physiological processes cannot be ruled out.


Journal of Chromatography B | 2016

Isotope-dilution method for the determination of 1-vinyl-2-pyrrolidone-mercapturic acid as a potential human biomarker for 1-vinyl-2-pyrrolidone via online SPE ESI-LC/MS/MS in negative ionization mode.

Jens Bertram; Thomas Schettgen; Thomas Kraus

We established and validated a specific and sensitive analytical method for the determination of 1-vinyl-2-pyrrolidone (VP) as 1-vinyl-2-pyrrolidone-mercapturic acid (VPMA) in urine using an electrospray liquid chromatography tandem mass spectrometry (ESI-LC/MS/MS) column switching method. An online solid phase extraction (SPE) for sample cleanup was performed by column switching to a restricted access material and back-flushing to the analytical column. A Phenomenex Luna C8 column was used for sample separation (150mm; ID 4,6mm; 3μm). D4-VPMA served as an isotope labeled internal standard and was detected in negative multiple-reaction monitoring (MRM) mode. The Limit of quantification (LOQ) for VPMA was 1.5μg/L, the intra-day precision of three concentrations (2μg/L, 75μg/L and 400μg/L) of spiked urine samples ranged from 2.7 to 7.3%, the inter-day precision from 3.4 to 14.4%. The accuracy ranged from 6.2 to 9.0%, for the intra-day experiments and from 0.3 to 6.9% for the inter-day experiments. The method was applied to urines of Sprague-Dawley rats exposed to VP as a proof of principle of VPMA as a potential biomarker.


Environmental Science and Pollution Research | 2014

Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: a review.

Natalia Quinete; Thomas Schettgen; Jens Bertram; Thomas Kraus

Collaboration


Dive into the Jens Bertram's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Schettgen

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Peter Brand

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar

Monika Gube

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar

Uwe Reisgen

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar

Klaus Lenz

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge