Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens Christian Johannsen is active.

Publication


Featured researches published by Jens Christian Johannsen.


Physical Review Letters | 2013

Direct view of hot carrier dynamics in graphene.

Jens Christian Johannsen; Søren Ulstrup; Federico Cilento; A. Crepaldi; M. Zacchigna; Cephise Cacho; I. C. Edmond Turcu; E. Springate; Felix Fromm; Christian Raidel; Thomas Seyller; F. Parmigiani; M. Grioni; Philip Hofmann

The ultrafast dynamics of excited carriers in graphene is closely linked to the Dirac spectrum and plays a central role for many electronic and optoelectronic applications. Harvesting energy from excited electron-hole pairs, for instance, is only possible if these pairs can be separated before they lose energy to vibrations, merely heating the lattice. Until now, the hot carrier dynamics in graphene could only be accessed indirectly. Here, we present a dynamical view on the Dirac cone by time- and angle-resolved photoemission spectroscopy. This allows us to show the quasi-instant thermalization of the electron gas to a temperature of ≈2000 K, to determine the time-resolved carrier density, and to disentangle the subsequent decay into excitations of optical phonons and acoustic phonons (directly and via supercollisions).


Physical Review Letters | 2014

Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene

Søren Ulstrup; Jens Christian Johannsen; Federico Cilento; Jill A. Miwa; A. Crepaldi; M. Zacchigna; Cephise Cacho; Richard T. Chapman; E. Springate; Samir Mammadov; Felix Fromm; Christian Raidel; Thomas Seyller; F. Parmigiani; M. Grioni; P. D. C. King; Philip Hofmann

Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tunable band gap. However, no consistent picture of the gaps effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here, we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second substate of the conduction band, in which the excited electrons decay through fast, phonon-assisted interband transitions.


Nano Letters | 2015

Observation of Ultrafast Free Carrier Dynamics in Single Layer MoS2

Antonija Grubišić Čabo; Jill A. Miwa; Signe S. Grønborg; J. M. Riley; Jens Christian Johannsen; Cephise Cacho; Oliver Alexander; Richard T. Chapman; E. Springate; M. Grioni; Jeppe V. Lauritsen; P. D. C. King; Philip Hofmann; Søren Ulstrup

The dynamics of excited electrons and holes in single layer (SL) MoS2 have so far been difficult to disentangle from the excitons that dominate the optical response of this material. Here, we use time- and angle-resolved photoemission spectroscopy for a SL of MoS2 on a metallic substrate to directly measure the excited free carriers. This allows us to ascertain a direct quasiparticle band gap of 1.95 eV and determine an ultrafast (50 fs) extraction of excited free carriers via the metal in contact with the SL MoS2. This process is of key importance for optoelectronic applications that rely on separated free carriers rather than excitons.


Nano Letters | 2015

Tunable Carrier Multiplication and Cooling in Graphene

Jens Christian Johannsen; Søren Ulstrup; A. Crepaldi; Federico Cilento; M. Zacchigna; Jill A. Miwa; Cephise Cacho; Richard T. Chapman; E. Springate; Felix Fromm; Christian Raidel; Thomas Seyller; P. D. C. King; F. Parmigiani; M. Grioni; Philip Hofmann

Time- and angle-resolved photoemission measurements on two doped graphene samples displaying different doping levels reveal remarkable differences in the ultrafast dynamics of the hot carriers in the Dirac cone. In the more strongly (n-)doped graphene, we observe larger carrier multiplication factors (>3) and a significantly faster phonon-mediated cooling of the carriers back to equilibrium compared to in the less (p-)doped graphene. These results suggest that a careful tuning of the doping level allows for an effective manipulation of graphenes dynamical response to a photoexcitation.


ACS Nano | 2016

Ultrafast Band Structure Control of a Two-Dimensional Heterostructure

Søren Ulstrup; Antonija Grubišić Čabo; Jill A. Miwa; J. M. Riley; Signe S. Grønborg; Jens Christian Johannsen; Cephise Cacho; Oliver Alexander; Richard T. Chapman; E. Springate; Mario Bianchi; Maciej Dendzik; Jeppe V. Lauritsen; Philip David King; Philip Hofmann

The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material or by environmental screening from the surrounding medium. The physical properties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and interlayer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS2 on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS2 layer. Following optical excitation, the band gap is reduced by up to ∼400 meV on femtosecond time scales due to a persistence of strong electronic interactions despite the environmental screening by the n-doped graphene. This points to a large degree of tunability of both the electronic structure and the electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure.


Journal of Physics: Condensed Matter | 2013

Electron–phonon coupling in quasi-free-standing graphene

Jens Christian Johannsen; Søren Ulstrup; Marco Bianchi; Richard C. Hatch; Dandan Guan; Federico Mazzola; Liv Hornekær; Felix Fromm; Christian Raidel; Thomas Seyller; Philip Hofmann

Quasi-free-standing monolayer graphene can be produced by intercalating species like oxygen or hydrogen between epitaxial graphene and the substrate crystal. If the graphene was indeed decoupled from the substrate, one would expect the observation of a similar electronic dispersion and many-body effects, irrespective of the substrate and the material used to achieve the decoupling. Here we investigate the electron-phonon coupling in two different types of quasi-free-standing monolayer graphene: decoupled from SiC via hydrogen intercalation and decoupled from Ir via oxygen intercalation. The two systems show similar overall behaviours of the self-energy and a weak renormalization of the bands near the Fermi energy. The electron-phonon coupling is found to be so weak that it renders the precise determination of the coupling constant λ through renormalization difficult. The estimated value of λ is 0.05(3) for both systems.


Physical Review B | 2013

Evidence of reduced surface electron-phonon scattering in the conduction band of Bi2Se3 by nonequilibrium ARPES

A. Crepaldi; Federico Cilento; B. Ressel; Cephise Cacho; Jens Christian Johannsen; M. Zacchigna; H. Berger; Ph. Bugnon; C. Grazioli; I. C. E. Turcu; E. Springate; Klaus Kern; M. Grioni; F. Parmigiani

The nature of the Dirac quasiparticles in topological insulators calls for a direct investigation of the electron-phonon scattering at the surface. By comparing time-resolved ARPES measurements of the topological insulator Bi2Se3 with different probing depths, we show that the relaxation dynamics of the electronic temperature of the conduction band is much slower at the surface than in the bulk. This observation suggests that surface phonons are less effective in cooling the electron gas in the conduction band.


Physical Review B | 2014

Momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X = I, Br, Cl)

A. Crepaldi; Federico Cilento; M. Zacchigna; M. Zonno; Jens Christian Johannsen; C. Tournier-Colletta; Luca Moreschini; I. Vobornik; F. Bondino; E. Magnano; H. Berger; Arnaud Magrez; Ph. Bugnon; G. Autès; Oleg V. Yazyev; M. Grioni; F. Parmigiani

Bulk Rashba systems BiTeX (X = I, Br, Cl) are emerging as important candidates for developing spintronics devices because of the coexistence of spin-split bulk and surface states, along with the ambipolar character of the surface charge carriers. The need to study the spin texture of strongly spin-orbit-coupled materials has recently promoted circular dichroic angular resolved photoelectron spectroscopy (CD-ARPES) as an indirect tool to measure the spin and the angular degrees of freedom. Here we report a detailed photon-energy-dependent study of the CD-ARPES spectra in BiTeX (X = I, Br, Cl). Our work reveals a large variation in the magnitude and sign of the dichroism. Interestingly, we find that the dichroic signal modulates differently for the three compounds and for the different spin-split states. These findings show a momentum and photon-energy dependence for the CD-ARPES signals in the bulk Rashba semiconductor BiTeX (X = I, Br, Cl). Finally, the outcome of our experiment indicates the important relation between the modulation of the dichroism and the phase differences between the wave functions involved in the photoemission process. This phase difference can be due to initial- or final-state effects. In the former case the phase difference results in possible interference effects among the photoelectrons emitted from different atomic layers and characterized by entangled spin-orbital polarized bands. In the latter case the phase difference results from the relative phases of the expansion of the final state in different outgoing partial waves.


Journal of Physics: Condensed Matter | 2015

Ultrafast electron dynamics in epitaxial graphene investigated with time- and angle-resolved photoemission spectroscopy.

Søren Ulstrup; Jens Christian Johannsen; A. Crepaldi; Federico Cilento; M. Zacchigna; Cephise Cacho; Richard T. Chapman; E. Springate; Felix Fromm; Christian Raidel; Thomas Seyller; F. Parmigiani; M. Grioni; Philip Hofmann

In order to exploit the intriguing optical properties of graphene it is essential to gain a better understanding of the light-matter interaction in the material on ultrashort timescales. Exciting the Dirac fermions with intense ultrafast laser pulses triggers a series of processes involving interactions between electrons, phonons and impurities. Here we study these interactions in epitaxial graphene supported on silicon carbide (semiconducting) and iridium (metallic) substrates using ultrafast time- and angle-resolved photoemission spectroscopy (TR-ARPES) based on high harmonic generation. For the semiconducting substrate we reveal a complex hot carrier dynamics that manifests itself in an elevated electronic temperature and an increase in linewidth of the π band. By analyzing these effects we are able to disentangle electron relaxation channels in graphene. On the metal substrate this hot carrier dynamics is found to be severely perturbed by the presence of the metal, and we find that the electronic system is much harder to heat up than on the semiconductor due to screening of the laser field by the metal.


Review of Scientific Instruments | 2014

Extracting the temperature of hot carriers in time- and angle-resolved photoemission

Søren Ulstrup; Jens Christian Johannsen; M. Grioni; Philip Hofmann

The interaction of light with a materials electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment.

Collaboration


Dive into the Jens Christian Johannsen's collaboration.

Top Co-Authors

Avatar

M. Grioni

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Crepaldi

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

E. Springate

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

F. Parmigiani

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Federico Cilento

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cephise Cacho

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard T. Chapman

Rutherford Appleton Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge