Jens Dingemann
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jens Dingemann.
Birth Defects Research Part B-developmental and Reproductive Toxicology | 2011
Elke Ruttenstock; Takashi Doi; Jens Dingemann; Prem Puri
BACKGROUND Pulmonary hypoplasia (PH) is the main cause of mortality in newborns with congenital diaphragmatic hernia (CDH). Prenatal administration of retinoic acid (RA) stimulates alveologenesis in the nitrofen-induced pulmonary hypoplasia. Insulin-like growth factor receptors (IGFRs) play a crucial role in alveologenesis during lung development. We recently demonstrated that IGFRs were downregulated in later stages of lung development in the nitrofen CDH model. Several studies suggest the ability of RA to regulate insulin-like growth factor signaling. We hypothesized that IGFRs pulmonary gene expression is upregulated after the administration of RA in the nitrofen-induced CDH model. METHODS Pregnant rats were exposed to either olive oil or nitrofen on day 9 (D9) of gestation. RA was given intraperitoneally on days D18, D19, and D20. Fetal lungs were dissected on D21 and divided into control, control + RA, CDH, and CDH + RA group. IGFRs gene and protein expression were determined using RT-PCR and immunohistochemistry. RESULTS mRNA expression levels of IGFRs were significantly increased in control + RA and CDH + RA compared with CDH group. Immunoreactivity of IGFRs was markedly increased in control + RA and CDH + RA compared with CDH lungs. CONCLUSIONS Upregulation of pulmonary gene and protein expression of IGFRs after prenatal RA treatment in the nitrofen model suggests that RA may promote lung growth by stimulating IGFRs mediated alveologenesis.
Journal of Pediatric Surgery | 2010
Jens Dingemann; Takashi Doi; Elke Ruttenstock; Prem Puri
PURPOSE The pathogenesis of pulmonary hypoplasia in congenital diaphragmatic hernia (CDH) is not fully understood. Platelet-derived growth factor A (PDGFA) and platelet-derived growth factor receptor α (PDGFRα) play a crucial role in lung development. It has been reported that PDGF induces H(2)O(2)-production and that oxidative stress may be an important mechanism for the impaired lung development in the nitrofen rat model. We hypothesized that pulmonary expression of PDGFA and PDGFRα is altered in the nitrofen induced CDH model. MATERIALS AND METHODS Pregnant rats received 100 mg nitrofen or vehicle on gestational day 9 (D9) and were sacrificed on D15, D18 or D21. RNA was extracted from fetal left lungs and mRNA levels of PDGFA and PDGFRα were determined using real-time polymerase chain reaction. Immunohistochemistry for protein expression of PDGFA and PDGFRα was performed. Pulmonary H(2)O(2) was measured colorimetrically. RESULTS mRNA levels of PDGFRα at D15 (4.50 ± 0.87) and PDGFA at D18 (2.90 ± 1.38) were increased in the nitrofen group (P < .05). Immunohistochemistry revealed increased pulmonary expression of PDGFRα and PDGFA. H(2)O(2) content was significantly higher in the nitrofen group. CONCLUSIONS Increased expression of PDGFA and PDGFRα suggests that pulmonary hypoplasia in the nitrofen CDH model may be owing to PDGF-induced oxidative stress during lung development.
Journal of Pediatric Surgery | 2012
Jan-Hendrik Gosemann; Takashi Doi; Balazs Kutasy; Florian Friedmacher; Jens Dingemann; Prem Puri
BACKGROUND/PURPOSE Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in normal lung development. Peroxisome proliferator-activated receptor γ messenger RNA (mRNA) is detectable at 18 days of gestation in fetal rat lungs, and levels peak just before birth. Peroxisome proliferator-activated receptor γ agonists are reported to stimulate lung development, whereas inhibition of PPARγ disrupts postnatal lung maturation. Monocyte chemoattractant protein 1 (MCP-1), which is inhibited by PPARγ, is reported to disrupt late lung morphogenesis. This study was designed to investigate the hypothesis that PPARγ expression is downregulated and that MCP-1 expression is upregulated during the late stages of lung development in nitrofen-induced hypoplastic lungs. METHODS Pregnant rats were treated with nitrofen or vehicle on D9. RNA was extracted from fetal lungs (D18 and D21), and relative mRNA expression levels of PPARγ and MCP-1 were determined by reverse transcriptase-polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression/distribution of PPARγ and MCP-1. RESULTS Relative mRNA expression levels of PPARγ were significantly downregulated in the nitrofen group compared with controls on D21, whereas MCP-1 levels were upregulated. Immunohistochemical study showed markedly decreased PPARγ and increased MCP-1 immunoreactivity in the nitrofen-induced hypoplastic lungs compared with controls on gestational day 21. CONCLUSION Altered pulmonary gene expression of PPARγ and MCP-1 during late gestation may impair lung development and maturation, contributing to pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia model.
Pediatric Surgery International | 2010
Jens Dingemann; Takashi Doi; Elke Ruttenstock; Prem Puri
PurposePulmonary hypoplasia and persistent pulmonary hypertension (PPH) aggravate clinical courses in congenital diaphragmatic hernia (CDH). Endothelin 1 enhances PPH by vasoconstriction and proliferation of vessel walls. Up-regulation of pulmonary Endothelin Receptors A and B (EDNRA, EDNRB) has been reported in human CDH and animal models, but the onset of those alterations during lung development remains unclear. We hypothesized that pulmonary expression of EDNRA and EDNRB is up-regulated at early gestational stages in the nitrofen model.MethodsPregnant rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Embryos were sacrificed on D15, D18 and D21 and divided into nitrofen- and control group. Pulmonary RNA was extracted and mRNA levels of EDNRA and EDNRB were determined by real-time PCR. Immunohistochemistry for protein expression of both receptors was performed.ResultsmRNA levels of EDNRA and EDNRB were significantly increased in the nitrofen group on D15, D18 and D21. Immunohistochemistry revealed increased pulmonary vascular expression of EDNRA and EDNRB compared to controls.ConclusionAltered expression of EDNRA and EDNRB is an early event in lung morphogenesis in the nitrofen model. We speculate that pulmonary arteries in CDH become excessively muscularised in early fetal life, becoming unable to adapt normally at birth.
Journal of Pediatric Surgery | 2010
Elke Ruttenstock; Takashi Doi; Jens Dingemann; Prem Puri
PURPOSE In congenital diaphragmatic hernia (CDH), high mortality rates are attributed to severe pulmonary hypoplasia. The insulinlike growth factor receptor type 1 (IGF-1R) and type 2 (IGF-2R) play a critical role in the alveologenesis during lung development. The IGF-1R null mutation mice die after birth because of respiratory failure. The IGF-2R knockout mice showed retarded lungs with poorly formed alveoli. We hypothesized that IGF-1R and IGF-2R gene expression levels are downregulated in the nitrofen-induced CDH model. METHODS Pregnant rats were exposed to either olive oil or 100 mg of nitrofen on day 9.5 (D9.5) of gestation. Fetuses were harvested on D18 and D21 and divided into control and nitrofen groups. Relative messenger RNA (mRNA) levels of IGF-1R and IGF-2R were determined using real time reverse transcription polymerase chain reaction. Immunohistochemistry was performed to determine protein expression. RESULTS Relative levels of IGF-1R mRNA were significantly decreased in the nitrofen group (2.91 +/- 0.81) on D21 compared to controls (5.29 +/- 2.59) (P < .05). Expression levels of IGF-2R mRNA on D21 were also significantly decreased in nitrofen group (1.76 +/- 0.49) compared to controls (3.59 +/- 2.45) (P < .05). Immunohistochemistry performed on D21 showed decreased IGF-1R and also IGF-2R expression in nitrofen group. CONCLUSION Downregulation of IGF-1R and IGF-2R gene expression may interfere with normal alveologenesis causing pulmonary hypoplasia in the nitrofen-induced CDH model.
European Journal of Pediatric Surgery | 2010
Jens Dingemann; Takashi Doi; Elke Ruttenstock; Prem Puri
INTRODUCTION The nitrofen model of Congenital Diaphragmatic Hernia (CDH) displays a diaphragmatic defect of the Bochdalek-type and has been widely used to investigate the pathogenesis of CDH. However, the exact pathomechanism of the diaphragmatic defect is still poorly understood. Fibroblast growth factor (FGF) receptor-like 1 (FGFRL1), a member of the FGF receptor family, plays a key role in physiological diaphragmatic development. FGFRL1 is expressed in the fetal diaphragm at low levels in early gestation and its expression steadily increases, becoming most pronounced in later gestational stages. It has been reported that FGFRL1 homozygous null mice have thin, partially amuscular diaphragms and die at birth due to respiratory failure. The aim of this study was to investigate the hypothesis that FGFRL1 gene expression in the diaphragm is downregulated during the later gestational stages in the nitrofen CDH model. MATERIAL AND METHODS Timed pregnant rats were exposed to either olive oil or 100 mg nitrofen on day 9 of gestation (D9). Cesarean section was performed on D18 or D21. Fetal diaphragms (n=40) were micro-dissected and divided into CDH group and controls. Total RNA was extracted from the diaphragms and the mRNA levels of FGFRL1 were determined using real-time PCR. Immunohistochemistry was performed to evaluate diaphragmatic protein expression of FGFRL1. Students t-test and Mann-Whitney test were used, where appropriate. Statistical significance was considered for p<0.05. RESULTS Relative mRNA expression levels of FGFRL1 were significantly decreased in the CDH group compared to controls on D18 (3.63 ± 1.65 vs. 6.04 ± 3.12, p<0.05) and D21 (1.36 ± 1.01 vs. 2.57 ± 1.34, p<0.05). Immunoreactivity of FGFRL1 was markedly decreased in the diaphragms of the CDH group compared to controls on D18 and D21. CONCLUSION Our data provide strong evidence that downregulation of the FGFRL1 gene during the late stages of gestation may contribute to the development of the diaphragmatic defect in nitrofen-induced CDH.
Birth Defects Research Part B-developmental and Reproductive Toxicology | 2013
Jens Dingemann; Takashi Doi; Jan-Hendrik Gosemann; Elke Ruttenstock; Nana Nakazawa; Prem Puri
BACKGROUND The molecular mechanisms underlying the diaphragmatic defect in congenital diaphragmatic hernia (CDH) are still poorly understood. The transcription factor GATA4 is essential for normal development of the diaphragm. Recently, mutations in the GATA4 gene have been linked to human and rodent CDH. We hypothesized that diaphragmatic GATA4 expression is downregulated in the nitrofen CDH model. METHODS Pregnant rats received Nitrofen or vehicle on day 9 of gestation (D9). Fetuses were sacrificed on D13, D18, or D21. Pleuroperitoneal folds (n=20) and fetal diaphragms (n=40) were (micro) dissected and divided into CDH group and controls. RNA and protein were extracted. GATA4 mRNA levels were determined by real-time PCR. Protein levels were determined by ELISA and Immunohistochemistry. RESULTS mRNA levels and Protein levels were significantly decreased in the CDH group compared to controls on D13 (mRNA 15.96±6.99 vs. 38.10±5.01, p<0.05), D18 (mRNA 10.45±1.84 vs. 17.68±2.11, Protein 2.59±0.06 vs. 4.58±0.35 p<0.05) and D21 (mRNA 4.31±0.83 vs. 6.87±0.88, Protein 0.16±0.08 vs. 1.26±0.49, p<0.05). Immunoreactivity of GATA4 was markedly decreased in CDH-diaphragms on D13, D18, and D21. CONCLUSIONS We provide evidence for the first time that diaphragmatic expression of GATA4 is downregulated in the nitrofen model, suggesting that decreased expression of GATA4 may impair diaphragmatic development in nitrofen-induced CDH.
Journal of Pediatric Surgery | 2012
Elke Ruttenstock; Takashi Doi; Jens Dingemann; Prem Puri
PURPOSE Connexin 43 (Cx43), a major gap junction protein, is necessary for alveologenesis and plays an important role in the differentiation of type II to type I alveolar epithelial cells. Knockout mice of Cx43 display severe pulmonary hypoplasia (PH). Prenatal administration of retinoic acid (RA) is known to stimulate alveologenesis in nitrofen-induced PH. Recent studies revealed that retinoids upregulate Cx43 expression. We hypothesized that gene expression of Cx43 is downregulated during alveologenesis and that administration of RA upregulates Cx43 expression in the nitrofen-induced PH. METHODS Pregnant rats were exposed to olive oil or nitrofen on day 9 (D9) of gestation. Retinoic acid was given intraperitoneally on D18, D19, and D20. Fetal lungs were harvested on D18 and D21 and divided into control, nitrofen, control+RA (D21), and nitrofen+RA (D21). The Cx43 expression levels were determined using reverse transcription polymerase chain reaction and immunohistochemistry. RESULTS On D18 and D21, Cx43 relative messenger RNA expression levels were significantly downregulated in nitrofen compared with those in the control group. On D21, expression levels of Cx43 were significantly upregulated in nitrofen+RA and control+RA compared with those in nitrofen group. Immunohistochemical studies confirmed these results. CONCLUSION Downregulation of Cx43 expression may interfere with normal alveologenesis. Upregulation of Cx43 pulmonary gene expression after RA treatment may promote lung growth by stimulating alveologenesis in nitrofen-induced PH.
Journal of Pediatric Surgery | 2010
Takashi Doi; Elke Ruttenstock; Jens Dingemann; Prem Puri
PURPOSE The pathogenesis of pulmonary hypoplasia in congenital diaphragmatic hernia (CDH) is not fully understood. The serine/threonine protein kinase B (AKT) plays important roles for lung morphogenesis through epithelial-mesenchymal interaction in phosphatidylinositide 3-kinase (PI3K)-dependent manner. It has been reported that the lung explant morphogenesis in mice is interfered by inhibitors of the PI3K-AKT pathway. We hypothesized that PI3K and AKT gene and protein expression/distribution are altered during epithelial morphogenesis in the nitrofen-induced hypoplastic lung. METHODS Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs were harvested on D15, D18, and D21 and divided into 3 groups as follows: control, nitrofen with CDH (CDH[-]), and nitrofen without CDH (CDH[+]) (n = 8 at each time-point, respectively). Reverse transcription polymerase chain reaction and immunohistochemistry were performed. RESULTS Messenger RNA expression levels of PI3K at D21 was significantly decreased in CDH(-) and CDH(+) group (5.71 +/- 0.85 and 6.80 +/- 0.88, respectively) compared to controls (8.95 +/- 3.22; P < .05). Messenger RNA levels of AKT were also significantly decreased at D18 in CDH(-) and CDH(+) lungs (1.21 +/- 0.16 and 1.20 +/- 0.32, respectively) compared to controls (1.62 +/- 0.14; P < .01). The PI3K immunoreactivity was diminished in the distal epithelium at D18 and decreased in the overall intensity at D21 in hypoplastic lungs compared to controls. The AKT immunoreactivity was decreased in mesenchyme at D18 and decreased overall intensity at D21 in CDH lungs compared to controls. CONCLUSION Spatiotemporal alteration of pulmonary PI3K and AKT gene and protein expression during epithelial morphogenesis may interfere with epithelial-mesenchymal interaction, causing pulmonary hypoplasia in CDH by disrupting PI3K-AKT signaling pathway.
Journal of Pediatric Surgery | 2011
Takashi Doi; Aušra Lukošiūtė; Elke Ruttenstock; Jens Dingemann; Prem Puri
BACKGROUND/PURPOSE Iroquois homeobox (Irx) genes have been implicated in the early lung morphogenesis of vertebrates. Irx1-3 and Irx5 gene expression is seen in fetal lung in rodents up to day (D) 18.5 of gestation. Fetal lung in Irx knockdown mice shows loss of mesenchyme and dilated airspaces, whereas nitrofen-induced hypoplastic lung displays thickened mesenchyme and diminished airspaces. We hypothesized that the Irx genes are up-regulated during early lung morphogenesis in the nitrofen-induced hypoplastic lung. METHODS Pregnant rats were exposed either to olive oil or nitrofen on D9. Fetal lungs harvested on D15 were divided into control and nitrofen groups; and the lungs harvested on D18 were divided into control, nitrofen without congenital diaphragmatic hernia (CDH[-]), and nitrofen with CDH (CDH[+]). Irx gene expression levels were analyzed by reverse transcriptase polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression of Irx family. RESULTS Pulmonary Irx1-3 and Irx5 messenger RNA expression levels were significantly up-regulated in nitrofen group compared with controls at D15. On D15, Irx immunoreactivity was increased in nitrofen-induced hypoplastic lung compared with controls. CONCLUSION Overexpression of Irx genes in the early lung development may cause pulmonary hypoplasia in the nitrofen CDH model by inducing lung dysmorphogenesis with thickened mesenchyme and diminished airspaces.