Jens Elgeti
Forschungszentrum Jülich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jens Elgeti.
Reports on Progress in Physics | 2015
Jens Elgeti; R. Winkler; Gerhard Gompper
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Jonas Ranft; Markus Basan; Jens Elgeti; Jean-François Joanny; Jacques Prost; Frank Jülicher
During the formation of tissues, cells organize collectively by cell division and apoptosis. The multicellular dynamics of such systems is influenced by mechanical conditions and can give rise to cell rearrangements and movements. We develop a continuum description of tissue dynamics, which describes the stress distribution and the cell flow field on large scales. In the absence of division and apoptosis, we consider the tissue to behave as an elastic solid. Cell division and apoptosis introduce stress sources that, in general, are anisotropic. By combining cell number balance with dynamic equations for the stress source, we show that the tissue effectively behaves as a viscoelastic fluid with a relaxation time set by the rates of division and apoptosis. If the system is confined in a fixed volume, it reaches a homeostatic state in which division and apoptosis balance. In this state, cells undergo a diffusive random motion driven by the stochasticity of division and apoptosis. We calculate the expression for the effective diffusion coefficient as a function of the tissue parameters and compare our results concerning both diffusion and viscosity to simulations of multicellular systems using dissipative particle dynamics.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Jens Elgeti; Gerhard Gompper
Propulsion by cilia is a fascinating and universal mechanism in biological organisms to generate fluid motion on the cellular level. Cilia are hair-like organelles, which are found in many different tissues and many uni- and multicellular organisms. Assembled in large fields, cilia beat neither randomly nor completely synchronously—instead they display a striking self-organization in the form of metachronal waves (MCWs). It was speculated early on that hydrodynamic interactions provide the physical mechanism for the synchronization of cilia motion. Theory and simulations of physical model systems, ranging from arrays of highly simplified actuated particles to a few cilia or cilia chains, support this hypothesis. The main questions are how the individual cilia interact with the flow field generated by their neighbors and synchronize their beats for the metachronal wave to emerge and how the properties of the metachronal wave are determined by the geometrical arrangement of the cilia, like cilia spacing and beat direction. Here, we address these issues by large-scale computer simulations of a mesoscopic model of 2D cilia arrays in a 3D fluid medium. We show that hydrodynamic interactions are indeed sufficient to explain the self-organization of MCWs and study beat patterns, stability, energy expenditure, and transport properties. We find that the MCW can increase propulsion velocity more than 3-fold and efficiency almost 10-fold—compared with cilia all beating in phase. This can be a vital advantage for ciliated organisms and may be interesting to guide biological experiments as well as the design of efficient microfluidic devices and artificial microswimmers.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Markus Basan; Jens Elgeti; Edouard Hannezo; Wouter-Jan Rappel; Herbert Levine
Recent experiments have shown that spreading epithelial sheets exhibit a long-range coordination of motility forces that leads to a buildup of tension in the tissue, which may enhance cell division and the speed of wound healing. Furthermore, the edges of these epithelial sheets commonly show finger-like protrusions whereas the bulk often displays spontaneous swirls of motile cells. To explain these experimental observations, we propose a simple flocking-type mechanism, in which cells tend to align their motility forces with their velocity. Implementing this idea in a mechanical tissue simulation, the proposed model gives rise to efficient spreading and can explain the experimentally observed long-range alignment of motility forces in highly disordered patterns, as well as the buildup of tensile stress throughout the tissue. Our model also qualitatively reproduces the dependence of swirl size and swirl velocity on cell density reported in experiments and exhibits an undulation instability at the edge of the spreading tissue commonly observed in vivo. Finally, we study the dependence of colony spreading speed on important physical and biological parameters and derive simple scaling relations that show that coordination of motility forces leads to an improvement of the wound healing process for realistic tissue parameters.
EPL | 2009
Jens Elgeti; Gerhard Gompper
We study the behavior of self-propelled nano- and micro-rods in three dimensions, confined between two parallel walls, by simulations and scaling arguments. Our simulations include thermal fluctuations and hydrodynamic interactions, which are both relevant for the dynamical behavior at nano- to micro-meter length scales. In order to investigate the importance of hydrodynamic interactions, we also perform Brownian-dynamics–like simulations. In both cases, we find that self-propelled rods display a strong surface excess in confined geometries. An analogy with semi-flexible polymers is employed to derive scaling laws for the dependence on the wall distance, the rod length, and the propulsive force. The simulation data confirm the scaling predictions.
Physical Review E | 2008
Yingzi Yang; Jens Elgeti; Gerhard Gompper
Sperm swimming at low Reynolds number have strong hydrodynamic interactions when their concentration is high in vivo or near substrates in vitro. The beating tails not only propel the sperm through a fluid, but also create flow fields through which sperm interact with each other. We study the hydrodynamic interaction and cooperation of sperm embedded in a two-dimensional fluid by using a particle-based mesoscopic simulation method, multiparticle collision dynamics. We analyze the sperm behavior by investigating the relationship between the beating-phase difference and the relative sperm position, as well as the energy consumption. Two effects of hydrodynamic interaction are found, synchronization and attraction. With these hydrodynamic effects, a multisperm system shows swarm behavior with a power-law dependence of the average cluster size on the width of the distribution of beating frequencies.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Simon Garcia; Edouard Hannezo; Jens Elgeti; Jean-François Joanny; Pascal Silberzan; Nir S. Gov
Significance Collective cell motion is very important in many biological processes such as wound healing, embryogenesis, or cancer progression. Nevertheless, it is not clear which parameters control the transition from freely moving single cells to collective jammed motion. In this article, we uncover complex dynamics as a cell monolayer ages, where cell motion is shown to gradually slow down with time, while the distance over which cell displacements are correlated first increases drastically and then decreases. This change of behavior is not controlled by cell density but rather by a maturation of the cell−cell and cell−substrate contacts. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process. Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell−cell and cell−substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data.
Physical Biology | 2011
Markus Basan; Jacques Prost; Jean-François Joanny; Jens Elgeti
In this work, we model biological tissues using a simple, mechanistic simulation based on dissipative particle dynamics. We investigate the continuum behavior of the simulated tissue and determine its dependence on the properties of the individual cell. Cells in our simulation adhere to each other, expand in volume, divide after reaching a specific size checkpoint and undergo apoptosis at a constant rate, leading to a steady-state homeostatic pressure in the tissue. We measure the dependence of the homeostatic state on the microscopic parameters of our model and show that homeostatic pressure, rather than the unconfined rate of cell division, determines the outcome of tissue competitions. Simulated cell aggregates are cohesive and round up due to the effect of tissue surface tension, which we measure for different tissues. Furthermore, mixtures of different cells unmix according to their adhesive properties. Using a variety of shear and creep simulations, we study tissue rheology by measuring yield stresses, shear viscosities, complex viscosities as well as the loss tangents as a function of model parameters. We find that cell division and apoptosis lead to a vanishing yield stress and fluid-like tissues. The effects of different adhesion strengths and levels of noise on the rheology of the tissue are also measured. In addition, we find that the level of cell division and apoptosis drives the diffusion of cells in the tissue. Finally, we present a method for measuring the compressibility of the tissue and its response to external stress via cell division and apoptosis.
New Journal of Physics | 2012
Fabien Montel; Morgan Delarue; Jens Elgeti; Danijela Vignjevic; Giovanni Cappello; Jacques Prost
In most instances, tumors have to push their surroundings in order to grow. Thus, during their development, tumors must be able to both exert and sustain mechanical stresses. Using a novel experimental procedure, we study quantitatively the effect of an applied mechanical stress on the long-term growth of a spherical cell aggregate. Our results indicate the possibility to modulate tumor growth depending on the applied pressure. Moreover, we demonstrate quantitatively that the cells located in the core of the spheroid display a different response to stress than those in the periphery. We compare the results to a simple numerical model developed for describing the role of mechanics in cancer progression.
Biophysical Journal | 2015
Chii J. Chan; Andrew Ekpenyong; Stefan Golfier; Wenhong Li; Kevin J. Chalut; Oliver Otto; Jens Elgeti; Jochen Guck; Franziska Lautenschläger
The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells.