Jens Hoffmann
Bayer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jens Hoffmann.
Cancer Research | 2008
Jens Hoffmann; Ilio Vitale; Bernd Buchmann; Lorenzo Galluzzi; Wolfgang Schwede; Laura Senovilla; Werner Skuballa; Sonia Vivet; Rosemarie Lichtner; Jose Miguel Vicencio; Theocharis Panaretakis; Gerhard Siemeister; Hermann Lage; Lisa Nanty; Stefanie Hammer; Kevin Mittelstaedt; Sebastian Winsel; Julia Eschenbrenner; Maria Castedo; Carine Demarche; Ulrich Klar; Guido Kroemer
Sagopilone (ZK-EPO) is the first fully synthetic epothilone undergoing clinical trials for the treatment of human tumors. Here, we investigate the cellular pathways by which sagopilone blocks tumor cell proliferation and compare the intracellular pharmacokinetics and the in vivo pharmacodynamics of sagopilone with other microtubule-stabilizing (or tubulin-polymerizing) agents. Cellular uptake and fractionation/localization studies revealed that sagopilone enters cells more efficiently, associates more tightly with the cytoskeleton, and polymerizes tubulin more potently than paclitaxel. Moreover, in contrast to paclitaxel and other epothilones [such as the natural product epothilone B (patupilone) or its partially synthetic analogue ixabepilone], sagopilone is not a substrate of the P-glycoprotein efflux pumps. Microtubule stabilization by sagopilone caused mitotic arrest, followed by transient multinucleation and activation of the mitochondrial apoptotic pathway. Profiling of the proapoptotic signal transduction pathway induced by sagopilone with a panel of small interfering RNAs revealed that sagopilone acts similarly to paclitaxel. In HCT 116 colon carcinoma cells, sagopilone-induced apoptosis was partly antagonized by the knockdown of proapoptotic members of the Bcl-2 family, including Bax, Bak, and Puma, whereas knockdown of Bcl-2, Bcl-X(L), or Chk1 sensitized cells to sagopilone-induced cell death. Related to its improved subcellular pharmacokinetics, however, sagopilone is more cytotoxic than other epothilones in a large panel of human cancer cell lines in vitro and in vivo. In particular, sagopilone is highly effective in reducing the growth of paclitaxel-resistant cancer cells. These results underline the processes behind the therapeutic efficacy of sagopilone, which is now evaluated in a broad phase II program.
Archive | 2002
Arwed Cleve; Christoph Huwe; Volker Schulze; Helmut Morack; Dieter Zopf; Jens Hoffmann; Andreas Reichel
Archive | 2001
Bernd Buchmann; Ulrich Klar; Werner Skuballa; Wolfgang Schwede; Rosemarie Lichtner; Jens Hoffmann
Archive | 2001
Jens Hoffmann; Rosemarie Lichtner; Gerhard Siemeister; Martin Schneider; Ulrike Fuhrmann
Archive | 2002
Martin Krüger; Olaf Prien; Andreas Steinmeyer; Jorg Kroll; Alexander Ernst; Gerhard Siemeister; Martin Haberey; Jens Hoffmann
Archive | 2008
Hartmut Schirok; Ying Li-Sommer; Michael Brands; Mario Lobell; Adrian Tersteegen; Herbert Himmel; Karl-Heinz Schlemmer; Dieter Lang; Kirstin Petersen; Matthias Renz; Dominik Mumberg; Jens Hoffmann; Gerhard Siemeister; Ulf Bömer
Archive | 2004
Arwed Cleve; Volker Schulze; Dieter Zopf; Jens Hoffmann; Andreas Reichel; Karsten Parczyk
Archive | 2002
Arwed Cleve; Christoph Huwe; Volker Schulze; Helmut Morack; Dieter Zopf; Jens Hoffmann; Andreas Reichel
Archive | 2004
Arwed Cleve; Volker Schulze; Dieter Zopf; Jens Hoffmann; Andreas Reichel; Karsten Parczyk
Archive | 2003
Alexander Hillisch; Walter Elger; Rolf Bohlmann; Jens Hoffmann