Jens Kiesel
University of Kiel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jens Kiesel.
Science of The Total Environment | 2015
Björn Guse; Jochem Kail; Johannes Radinger; Maria Schröder; Jens Kiesel; Daniel Hering; Christian Wolter; Nicola Fohrer
Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on river ecosystems.
Journal of Hydrology and Hydromechanics | 2013
Jens Kiesel; Britta Schmalz; Gary L. Brown; Nicola Fohrer
Abstract This study shows a comprehensive simulation of water and sediment fluxes from the catchment to the reach scale. We describe the application of a modelling cascade in a well researched study catchment through connecting stateof- the-art public domain models in ArcGIS. Three models are used consecutively: (1) the hydrological model SWAT to evaluate water balances, sediment input from fields and tile drains as a function of catchment characteristics; (2) the onedimensional hydraulic model HEC-RAS to depict channel erosion and sedimentation along a 9 km channel onedimensionally; and (3) the two-dimensional hydraulic model AdH for simulating detailed substrate changes in a 230 m long reach section over the course of one year. Model performance for the water fluxes is very good, sediment fluxes and substrate changes are simulated with good agreement to observed data. Improvement of tile drain sediment load, simulation of different substrate deposition events and carrying out data sensitivity tests are suggested as future work. Main advantages that can be deduced from this study are separate representation of field, drain and bank erosion processes; shown adaptability to lowland catchments and transferability to other catchments; usability of the model’s output for habitat assessments.
PLOS ONE | 2015
Jochem Kail; Björn Guse; Johannes Radinger; Maria Schröder; Jens Kiesel; Maarten G. Kleinhans; Filip Schuurman; Nicola Fohrer; Daniel Hering; Christian Wolter
River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability / ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes) on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact research as well as river restoration and management.
International Journal of Hydrology Science and Technology | 2018
Jens Kiesel; Matthias Pfannerstill; Britta Schmalz; Vitaliy Khoroshavin; Artyom Sheludkov; Tatiana Veshkurtseva; Nicola Fohrer
To date, no examples of small- to meso-scale hydrological simulations exist in the southern part of the Western Siberian lowlands, despite intensive agriculture and high vulnerability to climate change. We propose a first simulation approach in which we assess the importance of surface and groundwater processes on hydrological model performance. Therefore, we simulated three catchments, using four different model setups incorporating different landscape characteristics and processes. An objective calibration and comparison framework was applied to assess the different setups which reached very diverse performance: the setups where physically-based surface retention is considered, showed slightly more realistic surface runoff driven peak flows and the setups with a more complex groundwater concept improved the depiction of surface runoff, the recession phase and the contributing baseflow significantly. The best performing, most complex setup was used to assess the prevailing hydrological processes of the lowland with its cold, continental climate in more detail.
Ecology and Evolution | 2018
Karan Kakouei; Jens Kiesel; Sami Domisch; Katie S. Irving; Sonja C. Jähnig; Jochem Kail
Abstract Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species’ response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower‐mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present‐day gauging data. Species’ abundances were predicted for three periods: (1) baseline (1998–2017), (2) horizon 2050 (2046–2065) and (3) horizon 2090 (2080–2099) based on these empirical relationships and using high‐resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low‐flow conditions, leading to decreased abundances of species up to −42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower‐mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate‐change impacts on species abundances and can be applied to any stressor, species, or region.
Hydrological Processes | 2010
Jens Kiesel; Nicola Fohrer; Britta Schmalz; Michael J. White
Journal of Biogeography | 2012
Sonja C. Jähnig; Mathias Kuemmerlen; Jens Kiesel; Sami Domisch; Qinghua Cai; Britta Schmalz; Nicola Fohrer
Ecological Indicators | 2013
Maria Schröder; Jens Kiesel; Andreas Schattmann; Sonja C. Jähnig; Armin W. Lorenz; Sandra Kramm; Hanneke E. Keizer-Vlek; Peter Rolauffs; Wolfram Graf; Patrick Leitner; Daniel Hering
Catena | 2011
Honghu Liu; Jens Kiesel; Georg Hörmann; Nicola Fohrer
Ecohydrology | 2015
Britta Schmalz; Mathias Kuemmerlen; Jens Kiesel; Qinghua Cai; Sonja C. Jähnig; Nicola Fohrer